• 제목/요약/키워드: Liaoning province

검색결과 61건 처리시간 0.026초

Smad4 mediates malignant behaviors of human ovarian carcinoma cell through the effect on expressions of E-cadherin, plasminogen activator inhibitor-1 and VEGF

  • Chen, Chen;Sun, Ming-Zhong;Liu, Shuqing;Yeh, Dongmei;Yu, Lijun;Song, Yang;Gong, Linlin;Hao, Lihong;Hu, Jun;Shao, Shujuan
    • BMB Reports
    • /
    • 제43권8호
    • /
    • pp.554-560
    • /
    • 2010
  • Smad4 is involved in cancer progression and metastasis. Using a pair of human syngeneic epithelial ovarian cancer cells with low (HO-8910) and high (HO-8910PM) metastatic abilities, we aimed to reveal the role of Smad4 in ovarian cancer metastasis in vitro. Smad4 was down-regulated in HO-8910PM cell line relative to HO-8910 by implicating Smad4 was probably a potential tumor suppressor gene for ovarian cancer. Re-expression of Smad4 decreased the migration ability and inhibited the invasion capacity of HO-8910PM, while promoted the cell adhesion capacity for HO-8910PM. The stable expression of Smad4 increased the expression of E-cadherin, reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and slightly down-regulated the expression of VEGF. Smad4 suppresses human ovarian cancer cell metastasis potential through its effect on the expressions of PAI-1, E-cadherin and VEGF. Results from current work implicate Smad4 might suppress the invasion and metastasis of human ovarian tumor cells through a TGF-$\beta$/Smad-mediated pathway.

Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway

  • Chenyang Ran;Meili Lu;Fang Zhao;Yi Hao;Xinyu Guo;Yunhan Li;Yuhong Su;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • 제48권4호
    • /
    • pp.405-416
    • /
    • 2024
  • Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

TOUSE: A Fair User Selection Mechanism Based on Dynamic Time Warping for MU-MIMO Networks

  • Tang, Zhaoshu;Qin, Zhenquan;Zhu, Ming;Fang, Jian;Wang, Lei;Ma, Honglian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4398-4417
    • /
    • 2017
  • Multi-user Multiple-Input and Multiple-Output (MU-MIMO) has potential for prominently enhancing the capacity of wireless network by simultaneously transmitting to multiple users. User selection is an unavoidable problem which bottlenecks the gain of MU-MIMO to a great extent. Major state-of-the-art works are focusing on improving network throughput by using Channel State Information (CSI), however, the overhead of CSI feedback becomes unacceptable when the number of users is large. Some work does well in balancing tradeoff between complexity and achievable throughput but is lack of consideration of fairness. Current works universally ignore the rational utilizing of time resources, which may lead the improvements of network throughput to a standstill. In this paper, we propose TOUSE, a scalable and fair user selection scheme for MU-MIMO. The core design is dynamic-time-warping-based user selection mechanism for downlink MU-MIMO, which could make full use of concurrent transmitting time. TOUSE also presents a novel data-rate estimation method without any CSI feedback, providing supports for user selections. Simulation result shows that TOUSE significantly outperforms traditional contention-based user selection schemes in both throughput and fairness in an indoor condition.

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • 동굴
    • /
    • 제76호
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway

  • Lu, Mei-Li;Wang, Jing;Sun, Yang;Li, Cong;Sun, Tai-Ran;Hou, Xu-Wei;Wang, Hong-Xin
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.683-694
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods: Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results: Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-b1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion: The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.