• Title/Summary/Keyword: LiPO

Search Result 265, Processing Time 0.03 seconds

Antibacterial Properties of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$Porous Class Ceramics ($Ag_2-Li_2O-CaO-TiO_2-P_2O_5$계의 다공성 글라스 세라믹스의 항균 특성)

  • Kang, Won-Ho;Yoon, Young-Jin;Lee, Yong-Soo;Hong, Bum-Soo;Yeom, Gon;Kim, Chang-Soo;Seok, Man-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • Porous glass ceramics composed of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$-CaO with 0.05-1.5 mole CuO were prepared by melting and 2 step heat treatment for nucleation at $610^{\circ}C$ and crystallization at $840^{\circ}C$. $\beta$-$Ca_3(PO_4)_2$crystal phase was selectively leached out in 1N-HC1 solution for 3 days, leaving $AgTi_2(PO_4)_3$and $LiTi_2(PO_4)_3$crystal phases. Antibacterial effects and characterizations of the porous glass ceramics were investigated. Staphylococcus aureus and Salmonella typhi bacteroa were used in this study. It was found that the resultant porous glass ceramics show excellent bacteriostatic properties.

  • PDF

Fabrication and Characteristics of z-cut Ti:LiNbO$_3$ Internal Chip for Optical Modulator (z-cut $Ti:LiNbO_3$광변조기 내부칩 제작 및 특성평가)

  • Kim, Seong-Ku;Yoon, Hyung-Do;Lee, Han-Young;Park, Gye-Choon;Lee, Jin;Kang, Sung-Jun
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.319-322
    • /
    • 1999
  • In this paper, we report characteristics of a internal chip of LiNbO$_3$ modulator with low-driving-voltage at 150nm wavelength. A Ti diffusion method for LiNbO$_3$ optical waveguide and a buffer layer for improving phase velocity mismatch between optical and microwave waves were employed. The traveling-wave coplanar waveguide electrode of 35mm is used for reducing the driving voltage. From this work, wideband modulation of 10㎓ and low-driving voltage of 3.9volts are realized.

  • PDF

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes

  • Huang, Bin;Liu, Suqin;Li, Hongliang;Zhuang, Shuxin;Fang, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2315-2319
    • /
    • 2012
  • To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.

Solid-state Synthesis of $LiFePO_4$ Cathode Materials for Lithium Ion Batteries Controling Particles Size of Precuror

  • Jun, Dae-Kyoo;Li, Hu;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.350-351
    • /
    • 2007
  • The $LiFePO_4$ as cathode materials for lithium ion batteries was synthesized by the solid-state reaction using ballmiller and employed one step heat treatment at $650^{\circ}C$. The influence of the heating time on the structure, particle size and cycle performance was investigated. $LiFePO_4$ heated at $650^{\circ}C$ for 3 h exhibited higher discharge capacity of 140 mAh/g and excellent cycle performance.

  • PDF

High Performance of Nano-sized LiFePO4 Positive Electrode Using Etched Al Current Collector

  • Lee, Gil-Won;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.157-162
    • /
    • 2010
  • The electrodes comprising nano-sized $LiFePO_4$, carbon black and binder are prepared with two different Al current collectors. One is the generally used normal Al foil and the other is the chemically etched Al foil. Surface characteristics of each Al foil and electrochemical performance of the cathodes using each foil are investigated. The electrode from the etched Al foil exhibits better physical and electrochemical properties as compared to those of the normal Al foil because the etched Al foil has rough surface with sub-micron pores which improve the adhesion between the electrode materials and the substrate. The electrode on the etched Al foil has such a strong peel strength that the impedance is smaller than that of normal one. Indeed the $LiFePO_4$ electrode from the etched Al foil exhibits a better rate capability and remains intact even after storage for 1 week at the charged state at the elevated temperature $60^{\circ}C$.

Electrochemical Properties of LiNi0.8Co0.16Al0.04O2 and Surface Modification with Co3(PO4)2 as Cathode Materials for Lithium Battery

  • Ryu, Kwang-Sun;Lee, Sang-Hyo;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1737-1741
    • /
    • 2008
  • The electrochemical and thermal stability of $LiNi_{0.8}Co_{0.16}Al_{0.04}O_2$ were studied before and after $Co_3(PO_4)_2$ coating. Different to conventional coating material such as $ZrO_2$ or AlPO4, the coating layer was not detected clearly by TEM analysis, indicating that the $Co_3(PO_4)_2$ nanoparticles effectively reacted with surface impurities such as $Li_2CO_3$. The coated sample showed similar capacity at a low C rate condition. However, the rate capability was significantly improved by the coating effect. It is associated with a decrease of impedance after coating because impedance can act as a major barrier for overall cell performances in high C rate cycling. In the DSC profile of the charged sample, exothermic peaks were shifted to high temperatures and heat generation was reduced after coating, indicating the thermal reaction between electrode and electrolyte was sucessfully suppressed by $Co_3(PO_4)_2$ nanoparticle coating.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Synthesis and Electrochemical Properties of LiFePO4 by Citrate Process (구연산염법을 이용한 LiFePO4 합성 및 전기화학특성에 관한 연구)

  • Kim, Soo-Min;Kim, Sang-Hun;Kim, Jin-Ho;Kim, Ung-Soo;Hwang, Hae-Jin;Cho, Woo-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.728-734
    • /
    • 2011
  • $LiFePO_4$ is a promising cathode material for secondary lithium batteries due to its high energy density, low cost and safety. $LiFePO_4$ was synthesized by the citrate process under reductive, neutral, and oxidative, atmospheres and the crystal structure was analyzed by X-ray powder diffraction. The samples synthesized under $N_2$ and $H_2$ atmosphere showed a single phase of a olivine structure, where the samples synthesized under $O_2$ atmosphere exhibited second phase of $Fe2O_3$. All the samples synthesized at 400, 600 and $800^{\circ}C$ under $N_2$ atmosphere presented a single phase of olivine. Residual organic material was observed for the sample synthesized at $400^{\circ}C$. There was nearly no intensity difference between the samples synthesized at $600^{\circ}C$ and $800^{\circ}C$. The electrochemical characteristic of the $LiFePO_4$ synthesized at $600^{\circ}C$ in the $N_2$ atmosphere was analyzed. The result exhibited an high discharge capacity of 160 mAh/g at the first cycle, and 155-160 mAh/g after 45 cycles.

LiH2PO4 Crystal as a Solid Electrolyte (고체 전해질로서의 LiH2PO4 결정)

  • Lee, Kwang-Sei;Cho, Joong-Seok;Kim, Geum-Chae;Jeon, Min-Hyon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.220-223
    • /
    • 2009
  • Lithium dihydrogen phosphate ($LiH_2PO_4$) powder was purchased from Aldrich Chemical Co. From the scanning electron microscope (SEM) observation, these polycrystals have dimensions in the range of $25-250{\mu}m$. The electrical conductivity was measured at a measuring frequency of 1 kHz on heating polycrystalline lithium dihydrogen phosphate ($LiH_2PO_4$) from room temperature to 493 K. Two anomalies appeared at 451 K ($T_{p1}$) and 469 K ($T_{p2}$). The electrical conductivity reached the magnitude of the superprotonic phases: $3{\times}10^{-2}{\Omega}^{-1}cm^{-1}$ at 451 K ($T_{p1}$) and $1.2{\times}10{\Omega}^{-1}cm^{-1}$ at 469 K ($T_{p2}$). It is uncertain whether the superprotonic phase transformations are due to polymorphic transitions in the bulk, surface transitions, or chemical reactions (thermal decomposition) at the surface. Considering several previous thermal studies (differential scanning calorimetry and thermogravimetry), our experimental results seem to be related to the last case: chemical reactions (thermal decomposition) at the surface with the progressive solid-state polymerization.