• Title/Summary/Keyword: LiOH

Search Result 843, Processing Time 0.029 seconds

Application of Terrestrial LiDAR to Monitor Unstable Blocks in Rock Slope (암반사면 위험블록 모니터링을 위한 지상 LiDAR의 활용)

  • Song, Young-Suk;Lee, Choon-Oh;Oh, Hyun-Joo;Pak, Jun-Hou
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.251-264
    • /
    • 2019
  • The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.

A experimental study of water vapor absorption characteristics using four components solution for gas fired absorption chiller (가스냉난방기용 4성분계 흡수용액의 수증기 흡수특성에 관한 실험적 연구)

  • Lee Yong-Won;Oh Young-Sam;Park Dal-Ryung;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.47-52
    • /
    • 1998
  • Water vapor absorption performance of four components solution ($LiBr+LiNO_3+LiC1+H_2O$) which could be substituted for commonly used $LiBr/H_2O$ solution in water cooled abosorption chiller is tested using a vertical tube absorber. Inlet solution concentration, inlet solution temperature, solution flow rate and inlet temperature of cooling water is varied as experimental parameters. The results of the experiment of water vapor absorption performance show that four components solution should have $2\%$ higher concentration for equal absorption capacity of $LiBr/H_2O$. But considering that four components solution have higher solubility than LiBr solution about $3\%$ high oncentration, four components solution ($LiBr+LiNO_3+LiC1+H_2O$) have more absorption capacity than LiBr solution in actual absorption chiller and can be applied to a small or air cooled absorption chiller.

  • PDF

Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Oh, Min-Wook;Han, Byung-Chan
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • The formation of Li-Si-O phases, $Li_4SiO_4$ and $Li_2SiO_3$ from the starting materials SiO and $Li_2O$ are analyzed using Vienna Ab-initio Simulation (VASP) package and the total energies of Li-Si-O compounds are evaluated using Projector Augmented Wave (PAW) method and correlated the structural characteristics of the binary system SiO-$Li_2O$ with experimental data from electrochemical method. Despite $Li_2SiO_3$ becomes stable phase by virtue of lowest formation energy calculated through VASP, the experimental method shows presence of $Li_4SiO_4$ as the only product formed when SiO and $Li_2O$ reacts during slow heating to reach $550^{\circ}C$ and found no evidence for the formation of $Li_2SiO_3$. Also, higher density of $Li_4SiO_4$(2.42 g $ml^{-1}$) compared to the compositional mixture $1SiO_2-2Li_2O$ (2.226 g $ml^{-1}$) and better cycle capacity observed through experiment proves that $Li_4SiO_4$ as the most stable anode supported by better cycleabilityfor lithium ion battery remains as paradox from the point of view of VASP calculations.

Effect of Alkali Metal Nitrates on the Ru/C-catalyzed Ring Hydrogenation of m-Xylylenediamine to 1,3-Cyclohexanebis(methylamine)

  • Kim, Young Jin;Lee, Jae Hyeok;Widyaya, Vania Tanda;Kim, Hoon Sik;Lee, Hyunjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1117-1120
    • /
    • 2014
  • Ru/C-catalyzed hydrogenation of m-xylylene diamine into 1,3-cyclohexanebis(methylamine) was greatly accelerated by the presence of $LiNO_3$, $NaNO_2$, or $NaNO_3$. It was found that the effect of the nitrate salt was significantly affected by the size of cation. The promoting effect of the nitrate salt increased with the decrease of the cation size: $LiNO_3$ ~ $NaNO_2$ > $KNO_3$ > $CsNO_3$ >> [1-butyl-3-methylimidazolium]$NO_3$. XRD analysis of the recovered catalysts after the hydrogenation reactions showed that $LiNO_3$ and $NaNO_2$ were completely transformed into LiOH and NaOH, respectively, along with the evolution of $NH_3$, while $KNO_3$ and $CsNO_3$ remained unchanged.

Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution (신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석)

  • Gwon, O-Gyeong;Yun, Jae-Ho;Mun, Chun-Geun;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성)

  • 조영재;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

Electrochemical properties of $LiMnO_2$ cathode materials by quenching method (Quenching 법을 이용한 리튬폴리머 전지용 $LiMnO_2$ 정극활물질의 전기화학적 특성)

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Park, Kyung-Hee;Park, Bok-Kee;SaGong, Geon;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.362-363
    • /
    • 2008
  • Well-defined o-$LiMnO_2$ cathode materials were synthesized using LiOH and $Mn_3O_4$ starting materials at $1050^{\circ}C$ in an argon flow by quenching method. The synthesized $LiMnO_2$ particles with crystalline phases were identified with X-ray diffraction (XRD, Dmax/1200, Rigaku). XRD results, demonstrated that the compound $LiMnO_2$ can be indexed to a single-phase material having the orthorhombic structure. In this paper, we analyzed the electrochemical performance of $LiMnO_2$/Li using solid polymer electrolyte and liquid electrolyte.

  • PDF