• Title/Summary/Keyword: LiMn2O4

Search Result 359, Processing Time 0.034 seconds

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF

Effect of $Li_4Ti_5O_{12}$ coating layer on capacity retention of $LiMn_2O_4$ as cathode materials of lithium ion secondary batteries for HEV application (HEV용 리튬 이차전지 양극물질 $LiMn_2O_4$$Li_4Ti_5O_{12}$ 코팅에 따른 영향)

  • Wai, Yin-Loo;Choi, Byung-Hyun;Jee, Mi-Jung;Lee, Dae-Jin;Shin, Jae-Su;Song, Kwang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.125-128
    • /
    • 2007
  • In these recent years, low cost and stable battery electrode materials have been studied for HV/HEV application. Spinel cathode material $LiMn_2O_4$ is widely studied as a promising cathode material of lithium ion secondary batteries because of it is low cost, easily to be prepared and capable to be operated in high voltage range. In this study, $LiMn_2O_4$ was undergoing surface modification with spinel lithium titanium oxide by sol-gel method in order to enhance its capacity retention. Properties of both unmodified and surface-modified $LiMn_2O_4$ were characterized by XRD, SEM, particle size analyzer while their cycling performance was tested with charge and discharge tester.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Ke-On
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

Effects on Electrochemical Performances of Conductive Agents with Different Particle Size in Spinel LiMn2O4 Cathode for Li-ion Batteries (리튬이온전지용 스피넬계 LiMn2O4 양극에서 상이한 입자크기를 가진 전도성물질이 전기화학적 성능에 미치는 영향)

  • Lee, Chang-Woo;Lee, Ml-Sook;Kim, Hyun-Soo;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.702-707
    • /
    • 2005
  • Spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conductive agents, and then carried out their comparative investigation for the performances of the $Li/LiMn_2O_4$ cells using different conductive agents with different particle size. In addition, their electrochemical impedance characteristic of $Li/Mn_2O_4$ cells using different conductive agents is effectively identified through a.c. impedance technique. As a consequence, $Li/LiMn_2O_4$ cells with Super P Black show better electrochemical performances ascribed to the significant contribution of feasible ionic conduction due to larger particle size than those with Acetylene Black.

The characterization of charge-discharge and initial impedance of $LiMn_{2-y}Mg_yO_4$ by change of temperature (온도 변화에 따른 $LiMn_{2-y}Mg_yO_4$의 충방전 및 초기 임피던스 특성)

  • Jeong, In-Seong;Lee, Seung-Woo;Kim, Min-Sung;Gu, Hal-Bon;Gu, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.18-22
    • /
    • 2001
  • Spinel $LiMn_{2-y}Mn_{y}O_4$ powder was prepared solid-state method by calcining the mixture of $LiOH{\cdot}H_2O$, $MnO_2$ and MgO at $800^{\circ}C$ for 36h. To investigate the effect of temperature for cycle behaviour of cathode material during cycling, charge-discharge experiments and initial impedance spectroscopy performed by the condition of the charge-discharge temperature. Initial charge-discharge capacity was gradually increased by rising charge-discharge temperature. However, capacity was suddenly decreased at high temperature during cycling. Capacity at low temperature was almost constant during cycling. It confirmed because Mn dissolution is more serious at high temperature than at low temperature.

  • PDF

The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature (충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

Synthesis of orthorhombic $LiMnO_2$ and its electrochemical properties

  • Kim, Jung-Min;Chung, Hoon-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • We prepared orthorhombic $LiMnO_2$ by emulsion drying method. The thermo-gravimetric measurement and X-ray diffraction studies indicated that the orthorhombic $LiMnO_2$ phase was formed above $800^{\circ}C$ by oxygen evaporation process from $LiMn_2O_4$ and $Li_2MnO_3$. In this process, we could control the ordering of $LiMnO_2$ with heating rate. It was observed that electrochemical properties depended on the ordering of this material; the ordered one exhibited good capacity retention, whereas the disordered one suffered capacity fading upon cycling, especially in the 3 V region. Transmission electron microscopic (TEM) study showed that this difference is related with difference in the stress relieving effects in the samples.