• 제목/요약/키워드: LiMn2O4

검색결과 152건 처리시간 0.033초

Fabrication of 3-Dimensional LiMn2O4 Thin Film

  • Park, Bo-Gun;Ryu, Jea Hyeok;Choi, Won Youl;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.653-656
    • /
    • 2009
  • 3-Dimensionally ordered macroporous $LiMn_2O_4$ thin film was prepared by a sol-gel and dip coating method on Pt/Ti/$SiO_2$/Si substrate. An opal structure consisting of mono dispersed polystyrene beads (300 nm) was used as a template. After solution containing Mn and Li precursors was coated on the template-deposited substrate, the template and organic materials in the precursors was removed by calcination at 400 ${^{\circ}C}$. And then the 3-dimensional $LiMn_2O_4$ thin film with spinel structure was fabricated by heat treatment at 700 ${^{\circ}C}$. The structural and electrochemical property was investigated by XRD, SEM and charge-discharge cycler.

구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구 (Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials)

  • 김경희;정태규;송준호;김영준
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.67-73
    • /
    • 2012
  • 본 연구에서는 습식분쇄, 구형화 분무건조 및 열처리 공정을 통해 구형의 $LiMn_{2-x}M_xO_4$(M = Al, Mg, B) 스피넬계 양극소재를 합성하고, 이의 전기화학적 성능을 평가하였다. $MnO_2$ (Tosoh, 91.94%), $Li_2CO_3$ (SQM, 97%), $MgCO_3$ (Aldrich, 99%), $Al(OH)_3$ (Aldrich, 99%) 및 $B_2O_3$ (Aldrich, 99%)를 원료로 사용하였으며, 분무건조공정에서 전구체의 구형화도 증가를 위해 PAAH 바인더를 첨가하였다. 200~500 nm 크기로 분쇄된 혼합 슬러리 용액으로부터 분무건조법을 통해 구형의 전구체를 제조하고, 이를 다양한 조건에서 열처리하여 최종 스피넬계 $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) 양극소재를 제조하였다. 제조된 구형의 $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) 양극재료는 이종원소 치환량, 특히 Boron 치환량에 따라 입자 표면 및 내부의 치밀도가 변화하는 것을 확인할 수 있었으며, 치밀도가 증가함에 따라 소재의 출력특성이 향상되었으며, 최적 조성의 양극소재는 상온 5 C 용량이 0.2 C 용량 대비 90% 이상이 됨을 확인하였다. 또한 표면의 치밀도도 증가함에 따라 $60^{\circ}C$ 고온 충방전 조건에서 수명특성이 향상되어 500회 사이클 이후에도 초기용량의 80% 이상을 유지하였다.

The Sintering Temperature Effect on Electrochemical Properties of LiMn2O4

  • Hwang, Jin-Tae;Park, Sung-Bin;Park, Chang-Kyoo;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3952-3958
    • /
    • 2011
  • The effect of sintering temperature on the electrochemical property of $LiMn_2O_4$ was investigated. Results showed that the particle size was increased at higher sintering temperatures while the initial capacity was decreased after high temperature sintering. Capacity fading, on the other hand, was suppressed at lower sintering temperatures since the sintering at higher temperatures (${\geq}800^{\circ}C$) increased the Mn ions with a lower oxidation state ($Mn^{+3}$), which induced structural instability during cycling due to dissolution of Mn ions into the electrolyte. In particular, $LiMn_2O_4$ sintered above $830^{\circ}C$ showed severe capacity fading (capacity loss was 38% of initial capacity) by lower coulombic efficiency due to the abnormally increased particle size.

알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성 (Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials)

  • 김선혜;심광보;김창삼
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.64-69
    • /
    • 2006
  • 초음파분무열분해법과 한 단계의 후열처리로 이차상이 없는 Al이 첨가된 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01. 0.05) 리튬이차전지용 양극활물질을 합성하였다. 합성된 분말은 Al의 첨가량이 많아짐에 따라서 $I_{003}/I_{104}$ 비는 감소하고 입자가 커지는 경향을 보였다. 상온에서 전류밀도 1C의 rate로 $3.0\sim4.5V$ 범위에서 충방전 시험한 결과, Al 치환량이 0.5와 1.0 at%에서는 초기용량이 180과 $184mAhg^{-1}$으로 치환하지 않았을 때의 $182mAhg^{-1}$과 차이가 없었으며, 싸이클 특성도 치환하지 않은 것과 0.5, 1.0 at% 치환한 조성에서 각각 81, 77, 81%의 방전용량이 유지되었다. 그러나 $3.0\sim4.6V$에서는 치환효과가 확실하게 나타나서, 50 싸이클 후의 치환하지 않은 것의 방전용량은 초기용량의 30%가지 감소한데 비하여 Al을 0.5 at% 치환한 것은 70%를 유지하였다. 치환에 의한 싸이클 특성 향상은 XPS 분석 결과 Al 치환이 $Mn^{3+}$의 양을 감소시켰기 때문인 것으로 사료되었다.

LiMn2O4/C 복합 양극을 이용한 비수계 슈퍼커패시터의 제조 (The Preparation of Non-aqueous Supercapacitors with LiMn2O4/C Composite Positive Electrodes)

  • 김경호;유지영;김민수;여태환
    • Korean Chemical Engineering Research
    • /
    • 제45권2호
    • /
    • pp.178-182
    • /
    • 2007
  • $LiMn_2O_4$와 활성탄을 양극의 활물질로 사용하여 비수계 슈퍼커패시터를 제조하고 $LiMn_2O_4$의 함량에 따른 특성을 분석하였다. Cyclic voltammetry, AC impedance 분석 등을 통하여, 활성탄의 전기 이중층으로 인한 capacitive 효과에 $Li^+$ 이온의 intercalation/deintercalation에 의한 faradaic 효과가 더해진 pseudocapacitance의 발현을 확인할 수 있었으며, $LiMn_2O_4$의 함량이 증가할수록 비정전용량 및 에너지 밀도가 증가하는 것을 확인할 수 있었다. $LiMn_2O_4:C$의 비율이 0.86:0.14인 복합 양극을 사용하여, 순수 활성탄 양극 대비 2배 이상인 23.83 F/cc의 비정전용량과 17.51 Wh/L의 에너지밀도를 얻을 수 있었다. 또한, 1,000회 충방전 후에도 60% 이상 향상된 비정전용량과 에너지 밀도를 얻을 수 있었다.

초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성 (Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method)

  • 추소연;범윤경;김성수;한규승
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.151-156
    • /
    • 2013
  • 리튬이온 전지의 양극물질로써, 초임계 수열합성법을 이용해 만들어진 분말은 각각 $850^{\circ}C$$900^{\circ}C$ 공기 분위기에서 10시간씩 소성하여 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$를 합성하였다. 온도를 조절함에 따라 합성된 분말은 어떠한 영향을 받는지 x-ray pattern, SEM-image, 물리적 특성과 전기화학적 거동을 관찰해 연구하였다. 그 결과, $900^{\circ}C$에서 열처리된 물질의 입자크기가 $850^{\circ}C$에서 열처리된 물질에 비해 더 큰 것으로 나타났고, 특히 초기 가역용량 163.84 mAh/g (0.1 C/2.0-4.3 V), 186.87 mAh/g (0.1 C/2.0-4.5 V)의 가역용량을 나타내면서 훌륭한 전기화학적 거동을 보였으며, 50th cycle에서도 91.49%(0.2 C/2.0-4.3 V)와 90.36%(0.2 C/2.0-4.5 V)의 높은 용량 유지율을 보였다.

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Ke-On
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.180-185
    • /
    • 2011
  • The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

The Coating Effects of Al2O3 on a Li[Li0.2Mn0.54Co0.13Ni0.13]O2 Surface Modified with (NH4)2SO4

  • Oh, Ji-Woo;Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1516-1522
    • /
    • 2014
  • A series of 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ surface treatments were applied to $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates. The $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates were synthesized using a co-precipitation method. Sample (a) was left pristine and variations of the 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ were applied to samples (b), (c) and (d). XRD was used to verify the space group of the samples as R$\bar{3}$m. Additional morphology and particle size data were obtained using SEM imagery. The $Al_2O_3$ coating layers of sample (b) and (d) were confirmed by TEM images and EDS mapping of the SEM images. 2032-type coin cells were fabricated in a glove box in order to investigate their electrochemical properties. The cells were charged and discharged at room temperature ($25^{\circ}C$) between 2.0V and 4.8V during the first cycle. The cells were then charged and discharged between 2.0V and 4.6V in subsequent cycles. Sample (d) exhibited lower irreversible capacity loss (ICL) in the first charge-discharge cycle as compared to sample (c). Sample (d) also had a higher discharge capacity of ~250 mAh/g during the first and second charge-discharge cycles when compared with sample (c). The rate capability of the $Al_2O_3$-coated sample (b) and (d) was lower when compared with sample (a) and (c). Sample (d), coated with $Al_2O_3$ after the surface treatment with $(NH_4)_2SO_4$, showed an improvement in cycle performance as well as an enhancement of discharge capacity. The thermal stability of sample (d) was higher than that of the sample (c) as the result of DSC.

제일원리 전산모사를 통한 리튬 이온 전지의 LiMn2O4 전극-전해질 계면 반응 분석 (First-principles Study on the Formation of Solid-Electrolyte Interphase on the LiMn2O4 Cathode in Li-Ion Batteries)

  • 최대현;강준희;한병찬
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.97-97
    • /
    • 2016
  • Development of advanced Li-ion battery cells with high durability is critical for safe operation, especially in applications to electric vehicles and portable electronic devices. Understanding fundamental mechanism on the formation of a solid-electrolyte interphase (SEI) layer, which plays a substantial role in the electrochemical stability of the Li-ion battery, in a cathode was rarely reported unlike in an anode. Using first-principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations we demonstrate atomic-level process on the generation of the SEI layer at the interface of a carbonate-based electrolyte and a spinel $LiMn_2O_4$ cathode. To accomplish the object we calculate the energy band alignment between the work function of the cathode and frontier orbitals of the electrolyte. We figure out that a proton abstraction from the carbonate-based electrolyte is a critical step for the initiation of an SEI layer formation. Our results can provide a design concept for stable Li-ion batteries by optimizing electrolytes to form proper SEI layers.

  • PDF

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.