• Title/Summary/Keyword: LiDAR-based point clouds

Search Result 33, Processing Time 0.03 seconds

A Segmented Morphology Filter for Airborne LiDAR Data (Airborne LiDAR 필터에 관한 연구)

  • Choi, Seung-Sik;Song, Nak-Hyeon;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Recent advances in airborne LiDAR technology allow rapid and inexpensive measurements of topography over large areas. The generation of DTM/DEM is essential to numerous applications such as the fields of civil engineering, environment, city planning and flood modeling. The demand for LiDAR data is increasing due to the reduced cost for DTM generation and the increased reliability, precision and completeness. In order to generate DTM, measurements from non-ground features such as building and vegetation have to be classified and removed. In this paper, a segmented morphology filter was developed to detect non-ground LiDAR measurements. First, segments LiDAR point clouds based on the elevation. Secondly classifies those protruding segments into non-ground points. Those non-ground points such as building and vegetation are removed, while ground points are preserved for DTM generation. For experiments, data sets used in Comparison of Filters (ISPRS, 2003) depicting urban and rural areas were selected. The experimental results show that the proposed filter can remove most of the non-ground points effectively with less commission and omission errors.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Toward Accurate Road Detection in Challenging Environments Using 3D Point Clouds

  • Byun, Jaemin;Seo, Beom-Su;Lee, Jihong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.606-616
    • /
    • 2015
  • In this paper, we propose a novel method for road recognition using 3D point clouds based on a Markov random field (MRF) framework in unstructured and complex road environments. The proposed method is focused on finding a solution for an analysis of traversable regions in challenging environments without considering an assumption that has been applied in many past studies; that is, that the surface of a road is ideally flat. The main contributions of this research are as follows: (a) guidelines for the best selection of the gradient value, the average height, the normal vectors, and the intensity value and (b) how to mathematically transform a road recognition problem into a classification problem that is based on MRF modeling in spatial and visual contexts. In our experiments, we used numerous scans acquired by an HDL-64E sensor mounted on an experimental vehicle. The results show that the proposed method is more robust and reliable than a conventional approach based on a quantity evaluation with ground truth data for a variety of challenging environments.

Visible Height Based Occlusion Area Detection in True Orthophoto Generation (엄밀 정사영상 제작을 위한 가시고도 기반의 폐색영역 탐지)

  • Youn, Junhee;Kim, Gi Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.417-422
    • /
    • 2008
  • With standard orthorectification algorithms, one can produce unacceptable structure duplication in the orthophoto due to the double projection. Because of the abrupt height differences, such structure duplication is a frequently occurred phenomenon in the dense urban area which includes multi-history buildings. Therefore, occlusion area detection especially for the urban area is a critical issue in generation of true orthophoto. This paper deals with occlusion area detection with visible height based approach from aerial imagery and LiDAR. In order to accomplish this, a grid format DSM is produced from the point clouds of LiDAR. Next, visible height based algorithm is proposed to detect the occlusion area for each camera exposure station with DSM. Finally, generation of true orthophoto is presented with DSM and previously produced occlusion maps. The proposed algorithms are applied in the Purdue campus, Indiana, USA.

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

Segmentation of Seabed Points from Airborne Bathymetric LiDAR Point Clouds Using Cloth Simulation Filtering Algorithm (항공수심라이다 데이터 해저면 포인트 클라우드 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Lee, Jae Bin;Jung, Jae Hoon;Kim, Hye Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • ABL (Airborne Bathymetric LiDAR) is an advanced survey technology that uses green lasers to simultaneously measure the water depths and oceanic topography in coastal and river areas. Seabed point cloud extraction is an essential prerequisite to further utilizing the ABL data for various geographic data processing and applications. Conventional seabed detection approaches often use return waveforms. However, their limited accessibility often limits the broad use of the bathymetric LiDAR (Light Detection And Ranging) data. Further, it is often questioned if the waveform-based seabed extraction is reliable enough to extract seabed. Therefore, there is a high demand to extract seabed from the point cloud using other sources of information, such as geometric information. This study aimed to assess the feasibility of a ground filtering method to seabed extraction from geo-referenced point cloud data by using CSF (Cloth Simulation Filtering) method. We conducted a preliminary experiment with the RIGEL VQ 880 bathymetric data, and the results show that the CSF algorithm can be effectively applied to the seabed point segmentation.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

AUTOMATIC GENERATION OF BUILDING FOOTPRINTS FROM AIRBORNE LIDAR DATA

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Jung-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.637-641
    • /
    • 2007
  • Airborne LIDAR (Light Detection and Ranging) technology has reached a degree of the required accuracy in mapping professions, and advanced LIDAR systems are becoming increasingly common in the various fields of application. LiDAR data constitute an excellent source of information for reconstructing the Earth's surface due to capability of rapid and dense 3D spatial data acquisition with high accuracy. However, organizing the LIDAR data and extracting information from the data are difficult tasks because LIDAR data are composed of randomly distributed point clouds and do not provide sufficient semantic information. The main reason for this difficulty in processing LIDAR data is that the data provide only irregularly spaced point coordinates without topological and relational information among the points. This study introduces an efficient and robust method for automatic extraction of building footprints using airborne LIDAR data. The proposed method separates ground and non-ground data based on the histogram analysis and then rearranges the building boundary points using convex hull algorithm to extract building footprints. The method was implemented to LIDAR data of the heavily built-up area. Experimental results showed the feasibility and efficiency of the proposed method for automatic producing building layers of the large scale digital maps and 3D building reconstruction.

  • PDF