• Title/Summary/Keyword: LiDAR system

Search Result 273, Processing Time 0.025 seconds

Detection of Unauthorized Facilities Occupying on the National and Public Land Using Spatial Data (공간정보 자료를 이용한 국·공유지 무단점유 시설물 탐색)

  • Lee, Jae Bin;Kim, Seong Yong;Jang, Han Me;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • This study has proposed a methodology to detect suspicious facilities that occupy national and public land by using the cadastral and digital maps. First, we constructed a spatial database of national & public land based on the cadastral maps by linking its management ledger. Using the PNU (Parcel Number) code as a key field, the data managed by different institutions are integrated into a single spatial information DB (database) and then, the use or nonuse state of each parcel is confirmed on the cadastral map. Next, we explored the suspicious facilities that existed in the unused parcel by utilizing the digital topographical map. Then, the proposed methodology was applied for various regions and tested its feasibility. Through this study, it will be possible to improve the utilization of digital maps and to manage the national and public land efficiently and economically.

Development of Gas Leak Detecting System Based on Quantum Technology (양자기술기반 가스 누출 감지 시스템 개발)

  • Kwon, Oh Sung;Park, Min Young;Ban, Changwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.57-62
    • /
    • 2021
  • Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.

LED Chromaticity-Based Indoor Position Recognition System for Autonomous Driving (자율 주행을 위한 LED 색도 기반 실내 위치 인식 시스템)

  • Jo, So-hyeon;Woo, Joo;Byun, Gi-sig;Jeong, Jae-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.603-605
    • /
    • 2021
  • With the expansion of the indoor service-providing robot market and the electrification of automobiles, research on autonomous driving is being actively conducted. In general, in the case of outside, the location is mainly recognized through GPS, and location positioning is performed indoors using technologies such as WiFi, UWB (Ultra-Wide Band), VLP, LiDAR, and Vision. In this paper, we introduce a system for location-positioning using LED lights with different color temperatures in an indoor environment. After installing LED lights in a simulated environment such as a tunnel, it was shown that information about the current location can be obtained through the analysis of chromaticity values according to location. Through this, it is expected to be able to obtain information about the location of the vehicle in the tunnel and the movement of the device in a room such as a warehouse or a factory.

  • PDF

Geometric and structural assessment and reverse engineering of a steel-framed building using 3D laser scanning

  • Arum Jang;Sanggi Jeong;Hunhee Cho;Donghwi Jung;Young K. Ju;Ji-sang Kim;Donghyuk Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.595-603
    • /
    • 2024
  • In the construction industry, there has been a surge in the implementation of high-tech equipment in recent years. Various technologies are being considered as potential solutions for future construction projects. Building information modeling (BIM), which utilizes advanced equipment, is a promising solution among these technologies. The need for safety inspection has also increased with the aging structures. Nevertheless, traditional safety inspection technology falls short of meeting this demand as it heavily relies on the subjective opinions of workers. This inadequacy highlights the need for advancements in existing maintenance technology. Research on building safety inspection using 3D laser scanners has notably increased. Laser scanners that use light detection and ranging (LiDAR) can quickly and accurately acquire producing information, which can be realized through reverse engineering by modeling point cloud data. This study introduces an innovative evaluation system for building safety using a 3D laser scanner. The system was used to assess the safety of an existing three-story building by implementing a reverse engineering technique. The 3D digital data are obtained from the scanner to detect defects and deflections in and outside the building and to create an as-built BIM. Subsequently, the as-built structural model of the building was generated using the reverse engineering approach and used for structural analysis. The acquired information, including deformations and dimensions, is compared with the expected values to evaluate the effectiveness of the proposed technique.

Economical and Industrial Effects of Fusion Technologies of multi-sensor Spatial Imagery (멀티센서 공간영상정보 통합처리기술의 경제적.산업적 효과분석)

  • Chang, Eun-Mi;Yoon, Min-Kyung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.147-155
    • /
    • 2007
  • 본 연구는 기술개발 자체의 효과성을 개발된 기술의 시장성, 확대 보급가능성, 민간분야의 기술 로드맵과의 관계성을 도출하는 것으로 실제로 업계에서 다양한 인맥과 프로젝트의 경험을 가지고 있는 자에 의한 심층인터뷰를 근거로 한 정성적 판단과 시장조사를 통한 정량적 판단을 결합하여 멀티센서의 기술개발의 가치를 평가하는 후속 조치에 해당되는 연구이다. 직접적 측면의 산업적 파급효과는 2006년에는 시범적인 수준에서 적용된 사례를 중심으로 정리해 본 결과, 다음과 같이 요약될 수 있다. 첫째, 전문화된 기업의 경우 각자의 강점에 기반을 두어 멀티센서의 적용시장을 바라보고 있다는 점이다. 모든 소프트웨어의 생산을 서버 부분부터 웹 버전, 모바일 버전까지 모두 보유하고 있는 벡터 부분의 GIS 수준과는 달리 위성영상 및 멀티센서 분야의 소프트웨어는 대용량으로 인한 한계로, 서버중심, 웹 중심의 개발이 이루어지고 있으나 모바일 분야까지 확장되지는 않고, 차량항법장치와의 연계를 통한 확장을 꾀하는 수준이라고 요약할 수 있다. 둘째, 전문기업이 아닌 대기업의 시장분석 및 전략에 관한 부분을 요약하자면, 멀티센서와 직접적인 연관을 갖는 회사는 많지 않으나 대체로 U-city 사업 발굴 시 멀티센서가 융합기술이 요소기술로서 기여할 수 있을 것이라는 기대는 하고 있으며, 규모도 1,000억 원 대를 상회할 것으로 바라보고 있다. 셋째, 멀티센서 개발기술의 상용화 및 산업화를 위한 제거 요소 및 감소 요소, 증가 요소 및 새로이 만들어야 할 요소 등을 다차원 전략으로 제시하였으나, 전략을 구사할 기관이 산재되어 있어 제도적 차원의 뒷받침이 기술개발과 더불어 진행되어야 한다는 결론에 이르게 된다. 넷째, 개발된 4개의 기술에 대하여 KVA에서 산출한 기업평가 방식을 변형하여 적용하였는데, 위성영상과 DEM 개발기술이 87% 이상의 점수를 받아 가장 시장성 및 활용성이 높은 기술로 평가되었으며, 초다분광영상에 대한 기술은 70%를 겨우 넘는 수준에서 평가가 되었다. 멀티센서 공간영상정보 통합처리 기술 개발은 다목적 실용위성의 보유, 국가 NGIS 사업의 결과물이 상당히 축척이 되어 있고, 라이다(LiDAR) 기술의 도입을 위한 환경이 조성되었기에 다른 국가에 비해 멀티센서 기술의 적용과 산업화가 가시화 될 수 있을 것으로 기대된다. 그러나 멀티센서 자료의 수급이 용이하지 못하고, 법 제도적인 한계, 시장의 성숙도가 기대이하라는 점 등의 한계를 노정하고 있다.

  • PDF

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

A Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment (차량주행 환경에서 다중라이다센서를 이용한 효과적인 검출 시스템 개발)

  • Kwon, Jin-San;Kim, Dong-Sun;Hwang, Tae-Ho;Park, Hyun-Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.313-320
    • /
    • 2018
  • The importance of sensors on a self-driving vehicle has rising since it act as eyes for the vehicle. Lidar sensors based on laser technology tend to yield better image quality with more laser channels, thus, it has higher detection accuracy for obstacles, pedistrians, terrain, and other vechicles. However, incorporating more laser channels results higher unit price more than ten times, and this is a major drawback for using high channel lidar sensors on a vehicle for actual consumer market. To come up with this drawback, we propose a method of integrating multiple low channel, low cost lidar sensors acting as one high channel sensor. The result uses four 16 channels lidar sensors with small form factor acting as one bulky 64 channels sensor, which in turn, improves vehicles cosmetic aspects and helps widespread of using the lidar technology for the market.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

Multi-core-based Parallel Query of 3D Point Cloud Indexed in Octree (옥트리로 색인한 3차원 포인트 클라우드의 다중코어 기반 병렬 탐색)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.301-310
    • /
    • 2013
  • The aim of the present study is to enhance query speed of large 3D point cloud indexed in octree by parallel query using multi-cores. Especially, it is focused on developing methods of accessing multiple leaf nodes in octree concurrently to query points residing within a radius from a given coordinates. To the end, two parallel query methods are suggested using different strategies to distribute query overheads to each core: one using automatic division of 'for routines' in codes controlled by OpenMP and the other considering spatial division. Approximately 18 million 3D points gathered by a terrestrial laser scanner are indexed in octree and tested in a system with a 8-core CPU to evaluate the performances of a non-parallel and the two parallel methods. In results, the performances of the two parallel methods exceeded non-parallel one by several times and the two parallel rivals showed competing aspects confronting various query radii. Parallel query is expected to be accelerated by anticipated improvements of distribution strategies of query overhead to each core.

Geometric calibration of digital photogrammetric camera in Sejong Test-bed (세종 테스트베드에서 항측용 디지털카메라의 기하학적 검정)

  • Seo, Sang-Il;Won, Jae-Ho;Lee, Jae-One;Park, Byoung-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The most recent, Digital photogrammetric camera, Airborne LiDAR and GPS/INS same sensors are used to acquire spatial information of various kinds in the field of aerial survey. In addition, Direct Georeferencing technology has been widely utilized with digital photogrammetric camera and GPS/INS. However, the sensor Calibration to be performed according to the combination of various sensors is followed by problems. Most of all, boresight calibration of integrated sensors is a critical element in the mapping process when using direct georeferencing or using the GPS/INS aerotriangulation. The establishment of a national test-bed in Sejong-si for aerial sensor calibration is absolutely necessary to solve this problem. And accurate calibration with used to integration of GPS/INS by aerotriangulation of aerial imagery was necessary for determination of system parameters, evaluation of systematic errors. Also, an investigation of efficient method for Direct georeferencing to determine the exterior orientation parameters and assessment of geometric accuracy of integrated sensors are performed.