• Title/Summary/Keyword: LiDAR system

Search Result 275, Processing Time 0.022 seconds

Dilution of Precision (DOP) Based Landmark Exclusion Method for Evaluating Integrity Risk of LiDAR-based Navigation Systems

  • Choi, Pil Hun;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • This paper introduces a new computational efficient Dilution of Precision (DOP)-based landmark exclusion method while ensuring the safety of the LiDAR-based navigation system that uses an innovation-based Nearest-Neighbor (NN) Data Association (DA) process. The NN DA process finds a correct landmark association hypothesis among all potential landmark permutations using Kalman filter innovation vectors. This makes the computational load increases exponentially as the number of landmarks increases. In this paper, we thus exclude landmarks by introducing DOP that quantifies the geometric distribution of landmarks as a way to minimize the loss of integrity performance that can occur by reducing landmarks. The number of landmarks to be excluded is set as the maximum number that can satisfy the integrity risk requirement. For the verification of the method, we developed a simulator that can analyze integrity risk according to the landmark number and its geometric distribution. Based on the simulation, we analyzed the relationship between DOP and integrity risk of the DA process by excluding each landmark. The results showed a tendency to minimize the loss of integrity performance when excluding landmarks with poor DOP. The developed method opens the possibility of assuring the safety risk of the Lidar-based navigation system in real-time applications by reducing a substantial amount of computational load.

Research of Vehicles Longitudinal Adaptive Control using V2I Situated Cognition based on LiDAR for Accident Prone Areas (LiDAR 기반 차량-인프라 연계 상황인지를 통한 사고다발지역에서의 차량 종방향 능동제어 시스템 연구)

  • Kim, Jae-Hwan;Lee, Je-Wook;Yoon, Bok-Joong;Park, Jae-Ung;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.453-464
    • /
    • 2012
  • This is a research of an adaptive longitudinal control system for situated cognition in wide range, traffic accidents reduction and safety driving environment by integrated system which graft a road infrastructure's information based on IT onto the intelligent vehicle combined automobile and IT technology. The road infrastructure installed by laser scanner in intersection, speed limited area and sharp curve area where is many risk of traffic accident. The road infra conducts objects recognition, segmentation, and tracking for determining dangerous situation and communicates real-time information by Ethernet with vehicle. Also, the data which transmitted from infrastructure supports safety driving by integrated with laser scanner's data on vehicle bumper.

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

A Study on the Construction and Evaluation of Intrusion Scenarios Based on 3D LiDAR Data (삼차원 라이더 데이터 기반의 침입 시나리오 구축 및 평가 연구)

  • Lee, Yoon-Yim;Lee, Eun-Seok;Noh, Hee-Jeon;Lee, Sung-Hyun;Kim, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.131-132
    • /
    • 2022
  • We generate classifications and scenarios for intrusions based on 3D LiDAR Data. Research was conducted to analyze and diversify various actual intrusion cases to establish a system that can recognize objects and identify and guard data on intrusion. By generating and simulating basic scenarios for cars, people, animals, natural objects and etc, we create a classification scheme necessary to build and evaluate systems for intrusion. Based on the finally constructed scenario, we add variables for vehicles and surrounding objects to diversify scenarios, and lay the foundation for building accurate and automated alerting systems for future intrusions.

  • PDF

Noncontact measurements of the morphological phenotypes of sorghum using 3D LiDAR point cloud

  • Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.483-493
    • /
    • 2022
  • It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Correction of Erroneous Model Key Points Extracted from Segmented Laser Scanner Data and Accuracy Evaluation

  • Yoo, Eun Jin;Park, So Young;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.611-623
    • /
    • 2013
  • Point cloud data (i.e., LiDAR; Light Detection and Ranging) collected by Airborne Laser Scanner (ALS) system is one of the major sources for surface reconstruction including DEM generation, topographic mapping and object modeling. Recently, demand and requirement of the accurate and realistic Digital Building Model (DBM) increase for geospatial platforms and spatial data infrastructure. The main issues in the object modeling such as building and city modeling are efficiency of the methodology and quality of the final products. Efficiency and quality are associated with automation and accuracy, respectively. However, these two factors are often opposite each other. This paper aims to introduce correction scheme of incorrectly determined Model Key Points (MKPs) regardless of the segmentation method. Planimetric and height locations of the MKPs were refined by surface patch fitting based on the Least-Squares Solution (LESS). The proposed methods were applied to the synthetic and real LiDAR data. Finally, the results were analyzed by comparing adjusted MKPs with the true building model data.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Object Detection with LiDAR Point Cloud and RGBD Synthesis Using GNN

  • Jung, Tae-Won;Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.192-198
    • /
    • 2020
  • The 3D point cloud is a key technology of object detection for virtual reality and augmented reality. In order to apply various areas of object detection, it is necessary to obtain 3D information and even color information more easily. In general, to generate a 3D point cloud, it is acquired using an expensive scanner device. However, 3D and characteristic information such as RGB and depth can be easily obtained in a mobile device. GNN (Graph Neural Network) can be used for object detection based on these characteristics. In this paper, we have generated RGB and RGBD by detecting basic information and characteristic information from the KITTI dataset, which is often used in 3D point cloud object detection. We have generated RGB-GNN with i-GNN, which is the most widely used LiDAR characteristic information, and color information characteristics that can be obtained from mobile devices. We compared and analyzed object detection accuracy using RGBD-GNN, which characterizes color and depth information.