• Title/Summary/Keyword: LiDAR Calibration

Search Result 22, Processing Time 0.027 seconds

A Comparative Analysis between Rigorous and Approximate Approaches for LiDAR System Calibration

  • Kersting, Ana Paula;Habib, Ayman
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.593-605
    • /
    • 2012
  • LiDAR systems provide dense and accurate topographic information. A pre-requisite to achieving the potential accuracy of LiDAR is having a proper system calibration, which aims at estimating all the systematic errors in the system measurements and the mounting parameters relating the different components. This paper presents a rigorous and two approximate methods for LiDAR system calibration. The rigorous approach makes use of the LiDAR equation and the system raw measurements. The approximate approaches utilize simplified LiDAR equations using some assumptions, which allow for less strict requirements regarding the raw measurements. The first presented approximate method, denoted as quasi-rigorous, assumes that we are dealing with a vertical platform (i.e., small pitch and roll angles). This method requires time-tagged point cloud and trajectory position data. The second approximate method, denoted as simplified, assumes that we are dealing with parallel strips, vertical platform, and minor terrain elevation variations compared to the flying height above ground. Such method can be performed using the LiDAR point cloud only. Experimental results using a real dataset, whose characteristics deviate to some extent from the utilized assumptions in the approximate methods, are presented to provide a comparative analysis of the outcome from the introduced methods.

A Study on Airborne LiDAR Calibration and Operation Techniques for Bathymetric Survey

  • Shin, Moon Seung;Yang, In Tae;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • The necessity of maritime sector for continuous management, accurate and update location information such as seabed shape and location, research on airborne LiDAR bathymetry surveying techniques are accelerating. Airborne LiDAR systems consist of a scanner and GPS/INS. The location accuracy of 3D point data obtained by a LiDAR system is determined by external orientation parameters. However, there are problems in the synchronization between sensors should be performed due to a variety of sensor combinations and arrangement. To solve this issue, system calibration should be conducted. Therefore, this study evaluates the system verification methods, processes, and operation techniques.

A Study on Airborne LiDAR System Calibration and Accuracy Evaluation (항공LiDAR 시스템 검정 및 정확도 평가 연구)

  • Choi, Yun-Soo;Kong, In-Ku;Lee, Kang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2005
  • Airborne LiDAR integrated with on-board GPS/INS and scanning technology is a state-of the-art system for direct 3D geo-spatial data acquisition. In this study, LiDAR data were calibrated using ground points in calibration site for the higher system accuracy. The accuracy results are ${\pm}15{\sim}30\;cm$ in horizontal and ${\pm}15\;cm$ in vertical. The results show that LiDAR system has capability for precise DEM and contour generation, 3D urban modeling and engineering design.

The Evaluation of Accuracy for Airborne Laser Surveying via LiDAR System Calibration (시스템 초기화(Calibration)에 따른 항공레이저측량의 정확도 평가)

  • 이대희;위광재;김승용;김갑진;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.15-26
    • /
    • 2004
  • The calibration for systematic error in LiDAR is crucial for the accuracy of airborne laser scanning. The main error is the misalignment of platforms between INS(Inertial Navigation System) and Laser scanner For planimetrical calibration of LiDAR, the building is good feature which has great changes in height and continuous flat area in the top. The planimetry error(pitch, roll) is corrected by adjustment of height which is calculated from comparing ground control points(GCP) of building to laser scanning data. We can know scale correction of laser range by the comparison of LiDAR data and GCP is arranged at the end of scan angle where maximize the height error. The area for scale calibration have to be large flat and have almost same elevation. At 1000m for average flying height, The Accuracy of laser scanning data using LiDAR is within 110cm in height and ${\pm}$50cm in planmetry so we can use laser scanning data for generating 3D terrain surface, expecically digital surface model(DSM) which is difficult to measure by aerial photogrammetry in forest, coast, urban area of high buildings

  • PDF

Signal Compensation of LiDAR Sensors and Noise Filtering (LiDAR 센서 신호 보정 및 노이즈 필터링 기술 개발)

  • Park, Hong-Sun;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, we propose a compensation method of raw LiDAR data with noise and noise filtering for signal processing of LiDAR sensors during the development phase. The raw LiDAR data include constant errors generated by delays in transmitting and receiving signals, which can be resolved by LiDAR signal compensation. The signal compensation consists of two stage. First one is LiDAR sensor calibration for a compensation of geometric distortion. Second is walk error compensation. LiDAR data also include fluctuation and outlier noise, the latter of which is removed by data filtering. In this study, we compensate for the fluctuation by using the Kalman filter method, and we remove the outlier noise by applying a Gaussian weight function.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

The Construction of 3D Spatial Imagery Information of Dam reservoir using LiDAR and Multi Beam Echo Sounder (LiDAR와 MBES를 이용한 댐 저수지 3차원 공간영상정보 구축)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Recently, the construction of three dimensional spatial information of Dam reservoir area is very important part in Dam management work such as sediment survey, but it is difficult to acquire detailed terrain data because totalstation and single beam echo sounder are applied to terrain survey. This study presented method to construct detailed terrain data of Dam reservoir area using LiDAR and multi beam echo sounder. First, LiDAR survey was carried out in land zone and calibration process was applied by ground control point. And also the DEM of land zone was constructed by using algorithm, which eliminated building and vegetation class. As the result of validation of LiDAR DEM using GPS terrain survey, it was possible to construct three dimensional terrain data that was satisfied with the tolerance error of LiDAR, which was the standard error of LiDAR DEM showed as 0.108m. Also multi beam echo sounder was applied to the survey of water zone and it could construct spatial information that was satisfied with bathymetry surveying tolerance error of International Hydrographic Organization by validation with terrain survey data. And LiDAR and multi beam echo sounder data were integrated and it was possible to construct three dimensional spatial imagery information that can be applied to Dam management work such as the estimation of sediment amounts or the monitoring of terrain change by linking with high resolution orthophoto.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

Calibration of Airborne LiDAR data using Natural Topography (자연지형을 이용한 항공 LiDAR 데이터의 보정)

  • 이임평;최윤수;박지혜;김경옥
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.473-478
    • /
    • 2004
  • LIDAH data often include systematic errors, which should be removed by a calibration process. This paper proposes a robust approach to calibrating LIDAR data using natural surfaces as reference data. The uniqueness of this approach is to employ a sophisticated selection scheme so that only a portion of LIDAR points can be used to estimate the bias parameters generating the systematic errors. This approach was applied to calibrating simulated LIDAR data. The results show that the approach can successfully recover the bias parameters and calibrate the data with acceptable RMS errors. Particularly, the parameter recovery model can be easily extended to register image data with LIDAR data.

  • PDF