• 제목/요약/키워드: Li-S batteries

검색결과 150건 처리시간 0.03초

리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성 (Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries)

  • 김호진;정우창;정연욱;이준형;김정주
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • 강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성 (Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures)

  • 남상철;조원일;조병원;윤경석;전해수
    • 전기화학회지
    • /
    • 제2권1호
    • /
    • pp.46-49
    • /
    • 1999
  • Electron-beam 증발장치를 이용하여 리튬 박막 2차 전지 양극용 lithium cobalt oxide 박막을 제조하였다. Stainless steel -기판 위에 입혀진 $LiCoO_2$ 박막은 열처리 과정을 거쳐 잘 발달된 hexagonal 구조의 (003)면을 나타냈으며, 3.9 V 부근에서 전위 평탄 영역이 나타났다. $LiCoO_2$, 박막은 증착속도가 증가함에 따라 Li/co 조성비가 양론비에 근접하였으며, $15{\AA}/s$의 증착속도로 제작한 경우 높은 방전용량을 나타내었다. 열처리 온도가 증가함에 따라 용량이 증가하여 $700^{\circ}C$에서 최대 값을 나타내었으나, 그 이상의 온도에서는 기판과의 반응 때문에 방전용량이 현저히 감소하였다. 박막 내부의 리튬과 코발트의 불균일한 조성은 초기 방전용량의 감소를 가져왔다.

그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가 (Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell)

  • 조경원;이영환;한정흠;유제선;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

리튬이온전지에서 새로운 양극재료를 위한 금속인산화물 (Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries)

  • 정성윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구 (Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying)

  • 박상호;신선식;선양국
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

Li$_2$Po$_{4-x}$N$_{x}$ 박막의 이온전도도에 미치는 Ti 첨가 (Effect of Doping on the Ionic Conductivity of Li$_2$Po$_{4-x}$N$_{x}$ thin Film)

  • 이재혁;이유기;박종완
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.255-261
    • /
    • 1997
  • Thin film batteries can be used as a micro power source for electronic in which minute power is needed. In this study, lithium phosphorous oxynitride(LIPON) thin films were deposited as an eletrolyte for lithium ion batteries using RF magentron sputtering of lithium phosphate in N2. Ti was also added into the LIPON films as a second network former to enhance the ioinc conductivity of the films. The optimum conditions for LIPON film deposition were sought and the electrolyte with the conductivity of $2.5 \times 10^{-6}$S/cm was obtained at the condition of RF power 4.4 W/$\textrm{cm}^2$, process pressure 10 mtorr and pure nitrogen ambience. Furthermore, the conductivity of LIPON films was increased from $2.5 \times 10^{-6}$S/cm to $8.6 \times 10^{-6}$S/cm by the doping of 2.4at.% Ti. It was also found that by adding Ti to LIPON films, Li content was increased and nitrogen content that reported having the cross-linking effect on LIPON films was also increased as confirmed XPS.

  • PDF

PLR (Plastic Lithium Rechargeable) Batteries using Nanoscale Materials : A Convenient Source of Electrical Energy for the Future?$\dag$

  • G. Campet;N. Treuil;A. Poquet;S. J. Hwang;C. Labrugere;A. Deshayes;J. C. Frison;J. Portier;J. M. Reau;J. H. Choy
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.885-892
    • /
    • 1999
  • This communication describes the synthesis of : (i) non-toxic and low cost nanocrystalline electrode materials, which can be prepared advantageously at low temperature ; (ii) highly conductive electrolyte membranes formed by the nano-encapsulation within a poly(acrylonitrile)-based polymer matrix of a solution of LiPF6 in organic solvants. The performances of rechargeable PLR (Plastic Lithium Rechargeable) batteries using the above mentioned components are presented.