• 제목/요약/키워드: Li-Ion

Search Result 1,315, Processing Time 0.024 seconds

Ge-Al Multilayer Thin Film as an Anode for Li-ion Batteries

  • Lee, Jae-Young;Ngo, Duc Tung;Park, Chan-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • We design Ge-Al multilayer assemblies as anode materials for Li-ion batteries, in which Ge and Al thin films are alternately deposited by a radio sputtering method. By sandwiching Ge layers between Al layer, the cyclability, rate capability, and capacity of Ge are improved significantly. The success of the Ge-Al multilayer is attributed to the Al films. To maintain the integrity of electrical contact, Al acts as an elastic layer, which can expand or shrink with the Ge film upon lithiation or delithiation. In addition, the presence of the Al film on the surface can prevent direct contact of Ge and electrolyte, thereby reducing the growth of a SEI layer. Importantly, with high electrical and ionic conductivities, the Al film provides efficient electrical and ionic routes for electrons and Li-ions to access the Ge film, promoting a high specific capacity and high rate capability for Ge.

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

Effect of Deposition Parameter on Ionic Conductivity of RF Magnetron Sputtered Li$_2$O-B$_2$O$_3$-SiO$_2$ Solid Electroiyte Films (RF 마그네트론 스퍼터링법으로 증착된 Li$_2$O-B$_2$O$_3$-SiO$_2$ 계 비정질 박막 고체전해질의 증착변수에 따른 이온전도 특성에 관한 연구)

  • 노남석;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.65-73
    • /
    • 1994
  • Effects of deposition parameter on the ionic conductivity and structural change of the Lithium borosili-cate solid electrolyte films, prepared by rf sputtering using 7$LI_2O-3B_2O_3-1SiO_2$ single phase target and also a mosaic target enriched with $LI_2O$, were analyzed by measuring AC impedance and IR absorption spectra for the films. Thed solid electrolyte film deposited from the single phase target exhibited very low ionic conductivi-ty of $10^{-10}{\Omega}^{-1}cm{-1}$ at room temperature, a result of low $Li^+$ ion content(7.52 at%) in the film. The $Li^+$ con-ductivity for the films deposited from the mosaic target, however, significantly increased to $10^{-7}{\Omega}^{-1}cm{-1}$ due to both an increased $Li^+$content (14.75 at %) and a structural change of the films. The increased ionic conduc-tivity of the film appears to be associated with an easiness of ionic mobility by structural change of glassy film from a some close packed network structure to a open one. These structural changes of film were found to be closely related to the increase in the peak intensity at~$960cm^{-1}$ of IR absorption spectra for the glassy films. With increasing either argon pressure from 3 to 21 mtorr or rf power from 2 to 3 W/$cm^2$, the $Li^+$ conduc-tivity for the films significantly increased to an order of $10^{-6}{\Omega}^{-1}cm{-1}$ due to an increase in openness of film structure, as confirmed by both an increase in the IR absorption peak intensity at ~$960cm^{-1}$ and a resultant reduction of activation energy for mobility of $Li^+$ ion.

  • PDF

Reductive Leaching of $LiCoO_2$in a Sulfuric Acid Solution (황산용액서 $LiCoO_2$의 환원침출)

  • 이철경;김낙형
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.9-14
    • /
    • 2001
  • A sulfuric acid leaching of $LiCoO_2$as cathodic active materials of lithium ion secondary batteries was investigated in terms of reaction variables. In the absence of a reducing agent, the extraction of cobalt was less than 40% in 2 M sulfuric acid at $75^{\circ}C$ instead of that of lithium could be almost 100% in the same conditions. To improve the Co extraction, hydrogen peroxide was used as a reducing agent in the range 2~20 vol%. When over 10vo1% hydrogen peroxide was added, the extractions of both metals were improved to about 95%. It seems to be due to the reduction of Co(III) to Co(II) that can be readily dissolved. The extractions of Co and Li were increased with increasing $H_2$$SO_4$concentration and temperature, and amount of hydrogen peroxide and with decreasing of pulp density. The optimum leaching conditions were determined at $2 M H_2$$SO_4$concentration, $75^{\circ}C$ operating temperature, 100 g/L. initial pulp density, 20 vol% $H_2$$O_2$addition and 30 min.

  • PDF

Crystal Structures and Electrochemical Properties of LiNi1-xMgxO2 (0≤x≤0.1) for Cathode Materials of Secondary Lithium Batteries (리튬 이차전지의 양극 활물질 LiNi1-xMgxO2 (0≤x≤0.1)의 결정구조 및 전기화학적 특성)

  • Kim, Deok-Hyeong;Jeong, Yeon Uk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • $LiNi_{1-x}Mg_xO_2$(x=0, 0.025, 0.05, 0.075, 0.1) samples were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{1-x}Mg_xO_2$samples give single phases of hexagonal layered structures with a space group of R-3m. The calculated cation-anion distances and angles from the Rietveld refinement were changed with Mg contents in $LiNi_{1-x}Mg_xO_2$. The thicknesses of $NiO_2$ slabs were increased and the distances between the $NiO_2$ slabs were decreased with the increase in Mg contents in the samples. The electrical conductivities of sintered $LiNi_{1-x}Mg_xO_2$ samples were around $10^{-2}$ S/cm at room temperature. The electrochemical performances of $LiNi_{1-x}Mg_xO_2$were evaluated by coin cell test. Compared to $LiNiO_2$, $LiNi_{0.95}Mg_{0.05}O_2$ exhibited improved high-rate capability and cyclability due to the well-ordered layered structure by doping of Mg ion.

Preparation and Electrochemical Properties of LiFePO4-PSS Composite Cathode for Lithium-ion Batteries

  • Nguyen, Hiep Van;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.177-180
    • /
    • 2012
  • In this study, we prepared $LiFePO_4$- poly (sodium 4-styrenesulfonate) (PSS) composite by the hydrothermal method and ball-milling process. Different wt% PSS were added to $LiFePO_4$. The cathode electrodes were made from mixtures of $LiFePO_4$-PSS: SP-270: PVDF in a weighting ratio of 70%: 25%: 5%. $LiFePO_4$-PSS powders were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical properties of $LiFePO_4$-PSS/Li batteries were analyzed by cyclic voltammetry, charge/discharge tests, and AC impedance spectroscopy. A Li/$LiFePO_4$-PSS battery with 4.75 wt% PSS shows the best electrochemical properties, with a discharge capacity of 128 mAh/g.

1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide as a Co-Solvent for Li-ion Battery Electrodes (혼합 용매로서의 1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide의 리튬 이차 전지용 전극별 거동)

  • Koh, Ah Reum;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • In the study, a room temperature ionic liquids as a co-solvent was used to evaluate the feasibility with various electrodes in Li-ion batteries. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl) imide(PP12 TFSI) is an ionic liquid that melts at $85^{\circ}C$. Pure PP12 TFSI is not able to be used as an electrolyte because it is a solid salt at room temperature. PP12 TFSI is mixed with EC/DEC(1/1 vol.%) to prepare mixed solvents. The electrolyte 1.5M $LiPF_6$ in a mixed solvent having 44 wt.% PP12 TFSI is prepared to evaluated the various electrodes. The electrolytes provides good cycles life of cells with $LiNi_{0.5}Mn_{1.5}O_4(LNMO)$, $LiFePO_4(LFP)$, $Li_4Ti_5O_{12}(LTO)$ and artificial graphite. Further improvement of the cell performances can be accomplished by enhancing wettability of electrolytes to electrodes.

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$ (수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성)

  • Kang, Kun-Young;Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2011
  • Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

The Corrosion Behavior of Hydrogen-Charged Zircaloy-4 Alloys (수소 장입된 Zircaloy-4 합금에서의 부식거동)

  • Kim, Seon-Jae;Kim, Gyeong-Ho;Baek, Jong-Hyeok;Choe, Byeong-Gwon;Jeong, Yo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.268-273
    • /
    • 1998
  • Standard Zircaloy-4 sheets, charged with 230-250ppm hydrogen by the gas-charging method and homogenized at $400^{\circ}C$ for 72hrs in a vacuum, were corroded in pure water and aqueous LiOH solutions using static autoclaves at $350^{\circ}C$. Their corrosion behaviors were characterized by measuring their weight gains with the corrosion time and observing their microstructures using an optical microscope and a scanning electron microscope. The elemental depth profiles for hydrogen and lithium were measured using a secondary ion mass spectrometry(S1MS) to confirm their distributions at the oxidelmetal interface. The normal Zircaloy-4 specimens corroded abruptly and heavily at the concentration of Li ions more than 30ppm in the aqueous solution. This is due to accelerations by the rapid oxidation of many Zr- hydrides formed by the large amount of absorbed hydrogen, resulting from the increased substitution of $Li^{+}$ ions with $Zr^{4+}$-sites in the oxide as the Li ion concentration increased. The specimens that had been charged with amounts of hydrogen greater than its solubility corroded early with a more rapid acceleration than normal specimens, regardless of the corrosion solutions. At longer corrosion times. however, normal specimens showed a rather accelerated corrosion rate compared to the hydrogen-charged specimens. These slower corrosion rates of the hydrogen-charged specimens at the longer corrosion times would be due to the pre-existent Zr-hydride in the matrix, which causes the hydrogen pick- up into the specimen to be depressed, when the oxide with an appropriate thickness formed.

  • PDF