• Title/Summary/Keyword: Li salt

Search Result 406, Processing Time 0.029 seconds

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene

  • Cho, Seung Kee;Lee, Soo Jin;Shin, So-Yeon;Moon, Jin Seok;Li, Ling;Joo, Wooha;Kang, Dae-Kyung;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2100-2105
    • /
    • 2015
  • Probiotic bacteria must have not only tolerance against bile salt but also no genes for antibiotic resistance. Leuconostoc citreum is a dominant lactic acid bacterium in various fermented foods, but it is not regarded as a probiotic because it lacks bile salt resistance. Therefore, we aimed to construct a bile salt-resistant L. citreum strain by transforming it with a bile salt hydrolase gene (bsh). We obtained the 1,001 bp bsh gene from the chromosomal DNA of Lactobacillus plantarum and subcloned it into the pCB4170 vector under a constitutive P710 promoter. The resulting vector, pCB4170BSH was transformed into L. citreum CB2567 by electroporation, and bile salt-resistant transformants were selected. Upon incubation with glycodeoxycholic acid sodium salt (GDCA), the L. citreum transformants grew and formed colonies, successfully transcribed the bsh gene, and expressed the BSH enzyme. The recombinant strain grew in up to 0.3% (w/v) GDCA, conditions unsuitable for the host strain. In in vitro digestion conditions of 10 mM bile salt, the transformant was over 67.6% viable, whereas only 0.8% of the host strain survived.

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

Electrochemical Behavior of Ce ion and Bi ion in LiCl-KCl Molten Salt

  • Kim, Beom-Kyu;Han, Hwa-Jeong;Park, Ji-Hye;Kim, Won-Ki;Park, Byung Gi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.227-228
    • /
    • 2017
  • In this paper, electrolytic behavior of Cerium and Ce-Bi ion system was studied. The electrochemical behavior of Ce was studied in $LiCl-KCl-CeCl_3$ molten salts using electrochemical techniques Cyclic Voltammetry on tungsten electrodes at 773K. During the process of CV electrolysis, intermetallic compound were observed of Ce, Cex-Biy. Further study, in order to determine clarity of diffusion coefficient in this experiment, we will compare result of electrochemistry method and we also need to quantitative research.

  • PDF

Sodium Intake, Salt Taste and Gastric Cancer Risk According to Helicobacter Pylori Infection, Smoking, Histological Type and Tumor Site in China

  • Zhong, Chen;Li, Kai-Nan;Bi, Jing-Wang;Wang, Bao-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2481-2484
    • /
    • 2012
  • Aim: The risk factors mostly strongly associated with gastric cancer are gastric bacteria Helicobacter pylori and diet. Using a case-control study among residents in Jinan, we examined the association between the salt taste and gastric cancer according to H. pylori infection, smoking and histological type as well as tumor site. Methods: This population-based case-control study included 207 cases and 410 controls. Data on potential risk factors of gastric cancer were obtained by interview of cases and controls with a questionnaire, salt taste preference was measured for all subjects, and IgG antibodies to H. pylori were applied to assess infection. Risk measures were determined using unconditional logistic regression. Results: The proportions of salt taste at intervals of 1.8-7.2 g/L and ${\geq}7.2$ g/L were significantly higher in cases than controls, with ORs of 1.56 (1.23-3.64) and 2.03 (2.12-4.11), respectively, subjects with high salt intake having an elevated risk for gastric cancer when infected with H. pylori. Significant modification by smoking and tumor site was observed across the different measures of salt intake, the highest salt taste showed higher cancer risk in ever smokers or with non-cardia cancers. Conclusion: Our study supports the view that high intake of sodium is an important dietary risk factor for gastric cancer, with a synergistic effect found between salt and H.pylori and smoking, dependent on the tumor site.