• Title/Summary/Keyword: Li absorption efficiency

Search Result 46, Processing Time 0.026 seconds

Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems (이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발)

  • Yun, Sang Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.

Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution (신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석)

  • Gwon, O-Gyeong;Yun, Jae-Ho;Mun, Chun-Geun;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

The study of High Efficiency Cycle Characteristics of the absorption Chiller (흡수식 냉동기 고효율화를 위한 사이클 설계)

  • Park, Chan-U
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.534-539
    • /
    • 2007
  • The objectives of the present work is to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, Solution heat exchangers(LSX, HSX) are a most effective element for the COP than the others. In spite of the poor contribution to COP, SCA make a rule to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio are varied with the relative size of RSX and LSX.

  • PDF

The Study on High Efficiency Cycle Characteristics of the Absorption Chiller (흡수식 냉동기 고효율화를 위한 사이클 설계)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.662-668
    • /
    • 2008
  • The objectives of the present work are to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, solution heat exchangers(LSX, HSX) are the most effective element for the COP than the others. In spite of the poor contribution to COP, SCA plays an important role to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio varies with the relative size of RSX and LSX.

Performance Analysis of New Working Solution for Absorption Refrigeration Machine using Treated Sewage (하수처리수이용 신용액 흡수식 냉동기의 성능해석)

  • 권오경;유선일;윤정인
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • The global environmental problems such as CFC, energy losses in heat recovery system as well as summer peak time power demands, the development of high efficiency absorption refrigeration systems is one of the most promising method in this problems. The absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cucles with parallel or series flow type has been performed. LiBr+LiI+LiCl+LiNO$_3$ solution was selected as the new working fluid. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficient of performance in the parallel or series flow type. In this study, we found out the characteristic of new working solution through the cycle simulation and compared LiBr solution to evaluate. The absorption refrigeration machine using the new working fluid was obtained better results COP rise and compactness of system by comparison with LiBr solution.

  • PDF

Effect of LiBr solution flow rates in commercial absorption chiller (상용 흡수식 냉동기에서 LiBr 수용액 유량변화에 따른 영향)

  • Choi, S.H.;Chung, B.C.;Nam, L.W.;Jurng, J.;Chin, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.292-297
    • /
    • 2001
  • This paper discusses the effect of varying LiBr solution circuits flow rates for a direct fired double effect commercial absorption chiller in the parallel flow configuration. The effects of solution flow rates have been investigated for generator, condenser, solution heat exchanger, absorber and evaporator. According to the result of this work, it was found that sensible heat rate of generator increases and refrigerant vapor generated in that decreases when inlet solution flow rate of that increases. As solution flow rate of absorber increases, the degree of superheat increases because of decreasing solution heat exchanger efficiency. The flashing vapor at the top of absorber increases in proportion to the degree of superheat whileas decreases cooling capacity inversely.

  • PDF

A Study on Improvement of the Physical Properties of 4 Component Working Fluid in Gas Fired Absorption Chillers (가스흡수식 냉방기용 4성분계 작동매체의 물성 향상 연구)

  • Baek, Young-Soon;Oh, Young-Sam;Lee, Yong-Won;Park, Dal-Ryung;Koo, Ki-Kap
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.400-406
    • /
    • 1999
  • In an effort to obtain high efficiency in gas fired absorption chillers, a new working fluid has been developed with thc addition of the component of $LiNO_3$, LiCl and LiI to the conventional solution of $LiBr-H_2O$. The solubility and vapor pressure of the 4 component working fluid developed in this work were measured and compared to the results of $LiBr-H_2O$ solution. It was observed that there exists an optimal mole ratio of the inorganic salts in terms of solubility. The mole ratio of LiBr, $LiNO_3$ and LiCl was found to be around 5:1:1~2 in the $LiBr-LiNO_3-LiCl-H_2O$ mixture, and in the case of $LiBr-LiO_3-Lil-H_2O$ and $LiBr-Lil-LiCl-H_2O$ mixtures, the mole ratio of LiBr, $LiNO_3$ and Lil/ LiBr, LiI and LiCl were found to be around 5:1:1 and 5:1:0.5~1 respectively. The vapor pressure of the 4 component working fluid of the optimal mole ratio was increascd with adding the component of $LiNO_3$, LiCl and LiI except for $LiBr-LiNO_3-LiCl-H_2O$ mixture. The absorption capacity of $LiBr-LiNO_3-LiCl-H_2O$ mixture was obtained higher than that of $LiBr-H_2O$ mixture.

  • PDF

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent (Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질)

  • Kim, Yang-Soo;Moon, Won-Jin;Jeong, Soon-Ki;Won, Dae-Hee;Lee, Sang-Ro;Kim, Byoung-Gyu;Chung, Kang-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4660-4665
    • /
    • 2011
  • New precursors as a Li adsorbent, $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe), were synthesized by hydrothermal method and their physicochemical properties were discussed. XRD and HRTEM results revealed that the original spinel structure was stabilized by cobalt-doping while Cu-, Ni- and Fe-doping led to structural changes. Such a structural stabilization by Cobalt-doping was maintained after lithium leaching by acid treatment. Li absorption efficiency from seawater was significantly enhanced by using the Cobalt-doped spinel manganese oxide, $Li_{1.6}[MnCo]_{1.6}O_4$, compared to the commercially available $Li_{1.33}Mn_{1.67}O_4$; the adsorbed amount of Li from 1g-adsorbent was 35 and 16 mg by $Li_{1.6}[MnCo]_{1.6}O_4$, and $Li_{1.33}Mn_{1.67}O_4$, respectively.

A Study on the Optical Properties of Lithium Injection in V$_2$O$_{5}$ Electrochromic Thin Films (리튬이 주입된 전기변색 V$_2$O$_{5}$ 박막의 광 특성에 관한 연구)

  • Ha, Seung-Ho;Cho, Bong-Hee;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.802-807
    • /
    • 1995
  • The electrochromic properties of vacuum deposited V$_2$O$_{5}$ thin films as a function of crystallinity and film thickness have been systematically investigated. The as-deposited films have slightly yellow appearance. V$_2$O$_{5}$ films deposited at higher substrate temperature(>14$0^{\circ}C$) are found to be crystalline while those deposited at low substrate temperature are amorphous. The optical modulation on lithium ion injection indicates that V$_2$O$_{5}$ films exhibit anodic coloration in the 300~500 nm wavelength range and cathodic coloration in the 500~1100nm wavelength range independent of crystallinity and film thickness. The optical band gap energy of crystalline and amorphous Li$_{x}$ VV$_2$O$_{5}$ films shifts to higher energies by 0.17 eV and 0.75 eV, respectively, with increasing lithium ion injection up to x=0.6. The coloration efficiency of amorphous Li$_{x}$ V$_2$O$_{5}$ exhibits very little dependence on film thickness and lithium ion injection amounts in the near-infrared while it increases significantly with increasing film thickness and decreasing lithium ion injection amounts in the blue and near-UV due to the shift in absorption edge below around 500nm. However, the coloration efficiency of crystalline Li$_{x}$ V$_2$O$_{5}$is relatively independent of film thickness and lithium ion injection in the 300~1100 nm wavelength range.

  • PDF