• Title/Summary/Keyword: Lexical Semantic Network(U-WIN)

Search Result 3, Processing Time 0.019 seconds

Disambiguation of Homograph Suffixes using Lexical Semantic Network(U-WIN) (어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 의미 중의성 해소)

  • Bae, Young-Jun;Ock, Cheol-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 2012
  • In order to process the suffix derived nouns of Korean, most of Korean processing systems have been registering the suffix derived nouns in dictionary. However, this approach is limited because the suffix is very high productive. Therefore, it is necessary to analyze semantically the unregistered suffix derived nouns. In this paper, we propose a method to disambiguate homograph suffixes using Korean lexical semantic network(U-WIN) for the purpose of semantic analysis of the suffix derived nouns. 33,104 suffix derived nouns including the homograph suffixes in the morphological and semantic tagged Sejong Corpus were used for experiments. For the experiments first of all we semantically tagged the homograph suffixes and extracted root of the suffix derived nouns and mapped the root to nodes in the U-WIN. And we assigned the distance weight to the nodes in U-WIN that could combine with each homograph suffix and we used the distance weight for disambiguating the homograph suffixes. The experiments for 35 homograph suffixes occurred in the Sejong corpus among 49 homograph suffixes in a Korean dictionary result in 91.01% accuracy.

Automatic Construction of Syntactic Relation in Lexical Network(U-WIN) (어휘망(U-WIN)의 구문관계 자동구축)

  • Im, Ji-Hui;Choe, Ho-Seop;Ock, Cheol-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.627-635
    • /
    • 2008
  • An extended form of lexical network is explored by presenting U-WIN, which applies lexical relations that include not only semantic relations but also conceptual relations, morphological relations and syntactic relations, in a way different with existing lexical networks that have been centered around linking structures with semantic relations. So, This study introduces the new methodology for constructing a syntactic relation automatically. First of all, we extract probable nouns which related to verb based on verb's sentence type. However we should decided the extracted noun's meaning because extracted noun has many meanings. So in this study, we propose that noun's meaning is decided by the example matching rule/syntactic pattern/semantic similarity, frequency information. In addition, syntactic pattern is expanded using nouns which have high frequency in corpora.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.