• 제목/요약/키워드: Lexical Semantic Network(U-WIN)

검색결과 3건 처리시간 0.014초

어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 의미 중의성 해소 (Disambiguation of Homograph Suffixes using Lexical Semantic Network(U-WIN))

  • 배영준;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권1호
    • /
    • pp.31-42
    • /
    • 2012
  • 현재까지 대부분의 한국어처리시스템에서는 가급적 많은 접미파생명사를 사전에 등재하여 처리하였다. 그러나 접미사는 생산성이 높기 때문에 모든 접미파생명사를 사전에 등재하는 것은 한계가 있다. 따라서 접미파생명사의 의미 분석을 통해서 미등재 접미파생명사를 분석할 필요가 있다. 본 논문에서는 접미파생명사의 의미 분석의 일환으로 한국어 어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 중의성 해소 방법을 제시한다. 형태 의미 주석 세종 말뭉치에서 동형이의어 접미사를 포함한 33,104개의 접미파생명사를 대상으로 실험하였다. 실험을 위해 먼저 동형이의어 접미사를 의미 태깅하였으며, 접미사 앞의 어근을 추출하여 U-WIN의 노드에 매핑시켰다. 또한 동형이의어 접미사와 결합되는 U-WIN 상의 노드들에 대해 거리 가중치를 부여하여 이를 동형이의어 접미사 중의성 해소에 사용하였다. 동형이의어 접미사 49종 중 세종말뭉치에 나타난 35개의 동형이의어 접미사를 대상으로 실험한 결과 91.01%의 정확률을 보였다.

어휘망(U-WIN)의 구문관계 자동구축 (Automatic Construction of Syntactic Relation in Lexical Network(U-WIN))

  • 임지희;최호섭;옥철영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.627-635
    • /
    • 2008
  • 본 연구에서는 사용자 어휘지능망(U-WIN)의 어휘 관계 중의 하나인 구문관계를 자동으로 구축하는 방법을 제시하고자 한다. 먼저, 구문관계를 형성할 수 있는 후보명사를 용언의 용례에서 문형 정보를 기준으로 추출함으로써, 용언의 세분화된 의미별로 정확하고 다양한 후보명사를 추출할 수 있다. 그러나 추출된 후보명사는 다양한 의미를 지니고 있으므로, 어휘간의 명확한 구문관계를 설정하기 위해서는 후보명사의 여러 의미 중에서 정확한 의미로 결정해야 한다. 그래서 본 연구에서는 용례 매칭 규칙, 구문 패턴, 의미 유사도, 빈도 정보 등을 이용하여 후보명사의 의미를 분별한다. 또한 구문패턴의 빈도 정보를 이용하여 용례에 나타나지 않지만 구문관계를 형성할 수 있는 명사를 추출하여 구문관계를 확장하고자 하였다. 이러한 연구는 명사 중심의 어휘망이 용언과의 구문관계 구축을 통해 형태소 분석, 구문 분석, 의미분석 등에 광범위하게 활용할 수 있는 어휘망의 기반을 다지는 작업이 될 수 있을 것이다.

U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템 (Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network)

  • 이용훈;옥철영;이응봉
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.63-76
    • /
    • 2012
  • 본 논문에서는 통계기반의 복합명사 분해 방법과 어휘의미망(U-WIN)과 사전 뜻풀이에서 추출한 의미관계 정보를 이용하는 한국어 복합명사 의미 태깅 시스템을 제안한다. 본 시스템은 크게 복합명사 분해, 의미제약, 그리고 의미 태깅의 세 가지 부분으로 이루어진다. 분해과정은 세종말뭉치에서 추출한 위치별명사 빈도를 사용하여 최적의 구성 명사 분해 후보를 선정하고 의미제약을 위한 구성 명사 재분해와 외래어 복원의 과정을 수행한다. 의미범위 제약과정은 유사도 비교의 계산량을 줄이고 정확도를 높이기 위해 원어 정보와 Naive Bayes Classifier를 이용해 가능한 경우 구성 명사의 의미를 선 제약한다. 의미 분석 및 태깅 과정에서는 bigram 구성 명사의 각 의미 유사도를 구하고 하나의 체인을 만들어가며 태깅을 수행한다. 본 시스템의 성능 평가를 위해 표준국어대사전에서 추출한 3음절 이상의 40,717개의 복합명사를 대상으로 의미 태깅된 테스트 셋을 구축하였다. 이를 이용한 실험에서 99.26%의 분해 정확도를 보였으며, 95.38%의 의미 분석 정확도를 보였다.