• Title/Summary/Keyword: Levitation Control

Search Result 286, Processing Time 0.03 seconds

Characteristics Analysis of Flexible Rail in Levitation Control System (부상제어 시스템에서 유연레일의 특성 분석)

  • Kim, Jong-Moon;Kim, Choon-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.733-734
    • /
    • 2006
  • In this parer, characteristics of the flexible rail in levitation control system are analysed. The magnetic levitation system is an electromagnet type and is full-scaled vehicles. The system consists of electromagnet, chopper, flexible rail, secondary suspension system and levitation controller. The mathematical modelling for the whole system is carried out. Especially, the flexible rail is modelled using second-order mass-spring-damper system. Using the derived model, the dynamic characteristics for the system are presented with different vehicle speed.

  • PDF

A Study on the Design of Logistics Transportation System using Magnetic Levitation (자기부상 물류이송시스템 설계에 관한 연구)

  • Choi, Dae-Gyu;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • In the paper, we propose a design method for the logistics transportation system using magnetic levitation that has a good characteristics without mechanical friction, noise and dust. The proposed transportation system consists of a levitation control system and a propulsion control system. Magnetic levitation system is an electromagnetic suspension system in which electromagnet generates magnetic attractive force and the attractive force pulls the rail. We design a PID controller for the current control of electromagnets. We use linear induction motors for propulsion of the proposed logistics transportation system and adapt the space vector PWM method for the propulsion control system. The proposed transportation system using magnetic levitation is verified performances through levitation and propulsion experiments.

One Board Controller Design with ATmega 128 Chip for Manetic Levitation System (ATmega 128 소자를 이용한 자기부상계 제어용 원-보드 컨트롤러의 설계)

  • Choung, K.G.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • Magnetic levitation system is nonlinear and inherently unstable, so it is difficult to control. Analog control circuit was widly used as the controller of magnetic levitation system, but digital controller is now substituted for analog controller according to development of digital electronics. In this study, Atmel AVR series, ATmega 128 which is a kind of $\mu$-processor for digital controller is used because the chip is cheap and popular. We designed and made ATmega 128 one-board controller and aimed to verify validity through the experiance of levitation response.

A Study on the Control System Design of Sensorless Magnetic Levitation System (센서리스 자기 부상계의 제어계 설계에 관한 연구)

  • 김창화;김영복;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.175-181
    • /
    • 1996
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are usually used to measure the gap. The use of sensor is troublesome such as sensor trouble, discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing controller by H$_{\infty}$ control theory using the sensorless method proposed already by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless method proposed by authors of magnetic levitation system through results of actual experiment..

  • PDF

A Study on the Gap Estimation Circuit Design of the Magnetic Levitation System (자기 부상계의 변위추정 회로설계에 관한 연구)

  • Kim, C.H.;Ha, Y.W.;Sim, S.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of gap sensors brings out the increase of the number of troublesome, and the decrease of the control performance because of the dislocation between the measurement point and the control point. This paper presents the design of the gap estimation circuit for the sensorless method proposed by authors in the magnetic levitation system. We made the gap estimation circuit which was composed of both the superposition circuit and the measuring circuit. And we investigated the validity of the usefulness of the proposed sensorless method in the magnetic levitation system through results of actual experiment.

  • PDF

Invitation to Levitotion Contro: Problems Expecting a Smart Solution

  • Kim, Kook-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.316-320
    • /
    • 1993
  • Electromagnetic suspension (E.M.S) type levitation system is studied in the control system design viewpoint. Dynamic characteristics in theoretical analysis as well as hardware implementation is considered. Open loop unstable, non-linear and timevarying characteristics are reviewed in the theoretcal section, while levitation control system for multi-vehicle train as well as magnet drive system is reviewed in the practical section. This paper suggests not only some well-known problem appearing in levitation control system design but also a subtle problem and solution candidates. But there exist many unmentioned problems wating for a smart problem solver.

  • PDF

Magnetic levitation characteristics of hybrid magnets according to the initial air gap length (자기부상용 하이브리드 전자석의 초기 공극 변화에 따른 특성 고찰)

  • Oh, Hyang-Jae;Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.647-648
    • /
    • 2006
  • In this paper, magnetic levitation characteristics of hybrid magnets are experimentally shown under the newly proposed airgap condition. The digital PID controller is utilized to control the airgap of the magnetic levitation system.

  • PDF

Design and Control of Levitation and Guidance Systems for a Semi-High-Speed Maglev Train

  • Kim, Min;Jeong, Jae-Hoon;Lim, Jaewon;Kim, Chang-Hyun;Won, Mooncheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • Research on Maglev (Magnetic Levitation) train is currently being conducted in Korea, concerning Urban Transit (110 km/h of maximum speed), semi-high-speed (200 km/h of maximum speed), and high-speed (550 km/h of maximum speed) trains. This paper presents a research study on the levitation and guidance systems for the Korean semi-high-speed maglev train. A levitation electromagnet was designed, and the need for a separate guidance system was analyzed. A guidance electromagnet to control the lateral displacement of the train and ensure its stable operation was then also designed, and its characteristics were analyzed. The dynamic performance of the designed levitation and guidance electromagnets was modeled and analyzed, using a linearized modeling of the system equations of motion. Lastly, a test setup was prepared, including manufactured prototypes of the designed system, and the validity of the design was verified and examined with performance evaluation tests.

Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator (영구자석 바이어스 자기부상 구동기 설계 및 해석)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Kim, Dong-Sung;Lee, Young-Sin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.