• Title/Summary/Keyword: Levitating Body

Search Result 2, Processing Time 0.014 seconds

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing (자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링)

  • Choi, G.H.;Yang, J.H.;Choung, K.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.