• Title/Summary/Keyword: Lever Analogy

Search Result 6, Processing Time 0.026 seconds

Power Flow Analysis for Manufacturing of Planetary Gears in an 8-speed Automatic Transmission (II): 4-8 Speeds (8단 자동변속기의 유성기어 가공을 위한 동력 흐름 해석 (2) : 4-8단)

  • Lee, Kyoung-Jin;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2016
  • The power flow of an 8-speed automatic transmission was analyzed using a lever analogy for the manufacturing of planetary gears. From the analysis, we found that the engine power was split between the first and second double-pinion planetary gears (DPPG1 and DPPG2), and was then passed to the DPPG3 for the fourth speed. For the fifth speed, the engine power was split between the DPPG1 and DPPG3. For the speeds 6-8, the engine power was passed only to SPPG2, while the seventh speed contained the power circulation.

Power Flow Analysis for Manufacturing of Planetary Gears in a 8-Speed Automatic Transmission (I): 1-3 Speeds (8단 자동변속기의 유성기어 가공을 위한 동력 흐름 해석 (I) : 1-3단)

  • Lee, Kyoung-Jin;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-56
    • /
    • 2016
  • In this paper, we analyze the power flow of an eight-speed automatic transmission by using a lever analogy for the manufacturing of planetary gears. The results indicate that the engine power is passed down to the carrier and ring gear in the first double pinion planetary gear (DPPG1), and to the sun gear, carrier, and ring gear in DPPG3 for the first speed. Although the power flow is similar in the second speed, the power circulation occurs in the second single pinion planetary gear (SPPG2). For the third speed, the engine power is passed from the carrier to the ring gear in DPPG, at which point the power is split between the sun gears of SPPG2 and DPPG3.

Analysis of Powertrain Efficiency for Input Split Type Hybrid Electric Vehicle considering Planetary-gear Efficiency (유성기어 효율을 고려한 입력분기 기반 하이브리드 전기자동차의 동력전달 효율 해석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.508-514
    • /
    • 2015
  • In this paper, the powertrain efficiency is analyzed for the input split type hybrid electric vehicle. For considering the powertrain loss, the power loss models of planetary gear and motor are applied. And, the mathematic equations of powertrain speed and torque are found by using the lever analogy. With the above models and equations, the powertrain efficiency is analyzed for the 0 to 180 km/h vehicle velocity range. From the analysis results, it is found that the transmission efficiency with the power loss of planetary gear is smaller maximum 2.1% than the transmission efficiency without the power loss of planetary gear.

Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle (입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle (출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.