• Title/Summary/Keyword: Levelized Fuel Cycle Cost

Search Result 12, Processing Time 0.016 seconds

Application of Economic Risk Measures for a Comparative Evaluation of Less and More Mature Nuclear Reactor Technologies

  • Andrianov, A.A.;Andrianova, O.N.;Kuptsov, I.S.;Svetlichny, L.I.;Utianskaya, T.V.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.431-439
    • /
    • 2018
  • Less mature nuclear reactor technologies are characterized by a greater uncertainty due to insufficient detailed design information, operational data, cost information, etc., but the expected performance characteristics of less mature options are usually more attractive in comparison with more mature ones. The greater uncertainty is, the higher economic risks associated with the project realization will be. Within a comparative evaluation of less and more mature nuclear reactor technologies, it is necessary to apply economic risk measures to balance judgments regarding the economic performance of less and more mature options. Assessments of any risk metrics involve calculating different characteristics of probability distributions of associated economic performance indicators and applying the Monte-Carlo method. This paper considers the applicability of statistical risk measures for different economic performance indicators within a trial case study on a comparative evaluation of less and more mature unspecified LWRs. The presented case study demonstrates the main trends associated with the incorporation of economic risk metrics into a comparative evaluation of less and more mature nuclear reactor technologies.

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.