• 제목/요약/키워드: Level-set approach

검색결과 457건 처리시간 0.027초

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권6B호
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Numerical Modeling of Turbulent Nonpremixed Lifted Flames

  • Kim, Hoojoong;Kim, Yongmo;Ahn, Kook-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.167-172
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

An Active Contour Approach to Extract Feature Regions from Triangular Meshes

  • Min, Kyung-Ha;Jung, Moon-Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.575-591
    • /
    • 2011
  • We present a novel active contour-based two-pass approach to extract smooth feature regions from a triangular mesh. In the first pass, an active contour formulated in level-set surfaces is devised to extract feature regions with rough boundaries. In the second pass, the rough boundary curve is smoothed by minimizing internal energy, which is derived from its curvature. The separation of the extraction and smoothing process enables us to extract feature regions with smooth boundaries from a triangular mesh without user's initial model. Furthermore, smooth feature curves can also be obtained by skeletonizing the smooth feature regions. We tested our algorithm on facial models and proved its excellence.

NUMERICAL STUDY ON COOLING CHARACTERISTICS OF MULTIPLE IMPINGING JETS INCLUDING THE EFFECT OF TURBULENCE (난류 효과를 포함한 다중 충돌 제트의 냉각 특성에 대한 수치적 연구)

  • Jeon, J.H.;Son, G.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.321-328
    • /
    • 2009
  • Free surface impinging jet on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The free surface of liquid-gas interface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further improved by employing a nonequilibrium $\kappa-\varepsilon$ turbulence model including the effect of low Reynolds number. The computations are made to investigate the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

NUMERICAL ANALYSIS OF FLOW AND COOLING CHARACTERISTICS OF SLIT JETS IMPINGEMENT (슬릿젯의 유동 및 냉각 성능에 대한 수치적 연구)

  • Son, S.;Son, G.;Lee, P.;See, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.448-450
    • /
    • 2010
  • Free surface liquid jet impingement, which is applicable to cooling of hot plates in a steel-making process, is investigated numerically by solving the conservation equations of mass, momentum and energy in the liquid and gas phases. The free-surface of liquid-gas interface is tracked by an improved level-set method incorporating a sharp-interface technique for accurate imposition of stress and heat flux conditions on the liquid-gas interface. The level-set approach is combined with a non-equilibrium $k-{\omega}$ turbulence model. The computations are made for slit nozzle jets to investigate their flow and cooling characteristics. Also, the effects of jetting angle, velocity and moving velocity of plate on the interfacial motion and the associated flow and temperature fields are quantified.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

Numerical Study of Droplet Motion in a Microchannel with defferent contact angles (접촉각에 따른 마이크로채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.656-657
    • /
    • 2008
  • The droplet dynamics in a hydrophilic/hydrophobic microchannel, which is applicable to a typical proton exchange membrane fuel cell (PEMFC), is studied numerically by solving the equations governing conservation of mass and momentum. The liquid-gas interface or droplet shape is determined by a level set method which is modified to treat contact angles. The matching conditions at the interface are accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The effects of contact angle, inlet flow velocity, droplet size and side wall on the droplet motion are investigated parametrically. Based on the numerical results, the droplet dynamics including the sliding and detachment of droplets is found to depend significantly on the contact angle. Also, a droplet removal process is demonstrated on the combination of hydrophilic and hydrophobic surfaces.

  • PDF

Numerical Study on a Thin Film Patterning Process Using Microdroplet Ejection (미세액적의 분사를 이용한 박막 패터닝 공정에 대한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.658-659
    • /
    • 2008
  • Numerical simulation is performed for a microdroplet deposition on the pre-patterned micro-structure. The liquid-air interface is tracked by level set method improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to overcome the patterning error.

  • PDF