• 제목/요약/키워드: Level-Pool

검색결과 238건 처리시간 0.033초

풍수해보험요율 산정을 위한 전국단위 내수침수해석 방안 (Nationwide Inundation Analysis method for Flood and Storm Disaster Insurance Rate)

  • Yoo, Jaehwan;Song, Juil;Jang, Moonyup;Kim, Hantae
    • 한국재난정보학회 논문집
    • /
    • 제11권1호
    • /
    • pp.55-62
    • /
    • 2015
  • 본 연구에서는 풍수해보험요율 산정을 위한 전국단위의 내수침수해석 방안을 제시하였다. 제시된 수정 Level-Pool침수해석은 실제 침수피해지역을 반영하고 내수침수 발생 범위를 한정하기 위해 도시계획 용도지역을 고려하였다. 수정 Level-Pool침수해석에 의한 내수침수지역과 풍수해저감종합계획의 내수재해위험지구와 비교를 통해 적용성을 검토한 결과 기존 Level-Pool침수해석과 비교하여 내수침수지역이 내수재해위험지구를 더 정확하게 재현하는 것으로 나타났다. 따라서 전국단위의 내수침수위험지역을 해석함에 있어서는 본 연구에서 제안한 수정 Level-Pool침수해석이 활용 가능할 것으로 판단된다.

풍수해보험요율 산정을 위한 Level-Pool 방법의 적용 (Application of Level-Pool method for Flood and Storm Disaster Insurance Rate)

  • 유재환;송주일;장문엽;김한태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.262-262
    • /
    • 2015
  • 풍수해보험은 국민안전처가 관장하고 민영보험사가 운영하는 정책보험으로 국민이 예기치 못한 풍수해 피해에 대처할 수 있도록 보험료의 일부를 국가 및 지방자치단체에서 보조해 주는 제도이다. 그러나 풍수해보험은 불합리한 보험요율체계 등의 문제점으로 인해 저조한 가입률을 보이고 있다. 현재 풍수해보험요율 산정시 과거의 피해이력만을 근거로 보험요율을 산정하고 있다. 또한 풍수해 보험은 태풍, 홍수, 호우, 강풍, 풍랑, 해일, 대설, 지진을 대상재해로 분류하고 있으나 동일 시군구 내에서는 재해요인별 원인별 가중치가 동일하게 적용되어 단일 보험요율을 적용하고 있다. 현재의 불합리한 보험요율체계의 문제점을 보완하고 향후 피해발생 위험을 고려하여 피해 특성에 따라 지역적으로 차등화된 보험요율을 적용하는 방안이 필요하다. 이에 따라 본 연구에서는 풍수해보험요율 산정을 위해 풍수해보험 대상재해 중 내수침수에 대한 분석 방안을 제시하고 적용성을 검토하고자 하였다. 우선 다양한 내수침수분석방법 중 전국단위의 내수침수분석을 위해 경제성, 간편성, 정확성을 고려하여 Level-Pool 방법을 선정하였다. 그리고 기존 Level-Pool 방법의 문제점을 보완하기 위해 내수침수분석 결과의 정확성을 향상시킬 수 있도록 도시계획 용도지역을 고려한 수정 Level-Pool 방법을 제시하고, 풍수해저감종합계획과 비교 검토를 실시하여 적용성을 검토하였다. 또한, 제시한 수정 Level-Pool 방법을 울산, 대구, 경북, 강원지역에 적용하여 내수침수위험지역을 도출하였다. 본 연구에서 제시한 수정 Level-Pool 방법을 통해 전국단위 내수침수 해석시 지역별로 차등화되고, 정확도가 높은 내수침수지역을 도출하여 풍수해보험요율 산정을 위한 기초자료로 활용할 수 있을 것으로 판단된다.

  • PDF

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

액적의 액막 충돌에 대한 수치해석 (A Numerical Analysis of a Drop Impact on the Liquid Surface)

  • 이상혁;허남건;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

계단식 어도의 난류흐름 수치해석 및 어류 소상 가능성 분석 (Numerical simulations of turbulent flow on the pool and weir type fishway and analysis of ascending possibility of fishes)

  • 권용준;류용욱;김형석
    • 한국수자원학회논문집
    • /
    • 제56권spc1호
    • /
    • pp.1037-1048
    • /
    • 2023
  • 하천에 설치된 댐, 보 등과 같은 횡단구조물은 수생태계에 영향을 미치며 종적 연결성을 단절하기 때문에 어류의 이동을 확보하기 위하여 어도가 설치된다. 그러나 어도 내부의 흐름 특성 및 어종에 따라 어류의 통과효율의 차이가 발생한다. 본 연구에서는 3차원 RANS 모형과 자유수면 해석을 위한 VOF (volume of fluid)기법을 적용한 수치모형을 활용하여 계단식 어도에서 발생하는 난류흐름을 수치모의 하였다. 계단식 어도의 pool의 길이 변화 및 상류 수위 변동을 고려하였으며 이들의 변화에 따라 평균유속 및 난류운동에너지 분포를 분석하였다. 표면류 및 잠입류 특성을 잘 재현하였으며 pool의 길이가 증가하면서 표면류에서 잠입류로 변화하였고 상류 수위가 증가함에 따라 표면류 특성이 명확하게 나타났다. 어도 내 어류의 이동과 관련된 수리학적 인자는 유속 및 난류운동에너지 등이 있으며 이를 바탕으로 어류의 소상 가능성을 검토하였다.

고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구 (Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer)

  • 박용철;박종호
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

사용후핵연료 습식저장시설 사고 안전성 평가 연구 현황 및 사고 사례 분석 (Analysis on Study Cases of Safety Assessment and Cases for Spent Nuclear Fuel Pool Accident)

  • 이신동;김혁재;손건우;김광표
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.283-292
    • /
    • 2023
  • Spent nuclear fuel corresponds to high-level radioactive waste that has high decay heat and radioactivity. Accordingly, Spent nuclear fuel withdrawn from the reactor core is primarily stored and managed in a spent nuclear fuel pool in the nuclear power plant to reduce decay heat and radioactivity. In Korea, most nuclear power plant store all spent nuclear fuel in a spent nuclear fuel pool. For wet storage, there are no defense in depth different with reactor core. The study related to spent nuclear fuel pool accident should be carried out to ensure safety. Therefore, it is necessary to analyze previous study cases related to safety of spent nuclear fuel pool and accident cases to build foundational knowledge. The Objective of this study is to analyze study cases of safety assessment and cases for spent nuclear fuel pool accident. For analyzing study cases of safety assessment, possible phenomena when spent nuclear fuel pool accident occurring identified, Subsequently, study cases for safety assessment about each phenomena were investigated, and materials & methods and results for each study are analyzed. For analyzing cases for spent nuclear fuel pool accident, we analyzed accident cases caused by loss of cooling and loss of coolant in spent nuclear fuel pool. Subsequently, causes and change of water level and temperature by each accident case are analyzed. As a result of the analysis on study cases of spent nuclear fuel pool accident, the results of the study conducted by each research institute were vary depending on the computer code, materials & methods of experiment and major assumptions used in the study. As a result of analyzing cases for spent nuclear fuel pool accident, it was found that accident cases for loss of cooling is more than cases for loss of coolant accident. Even though the types of accident in spent nuclear fuel pool were similar, the specific causes were different by each accident case. All the accident cases analyzed did not lead to severe accidents, such as nuclear fuel being exposed to the air. The result of this study will be used as fundamental data for study on spent nuclear fuel pool accident that will be conducted in the future.

실내수영장의 열, 기류 및 습도환경에 관한 연구 (A Study of Thermal, Air-flow and Humidity Conditions in an Indoor Swimming Pool)

  • 강석윤;이태구;문종선;이재헌
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.683-689
    • /
    • 2003
  • The thermal comfort of an indoor swimming pool is different from that of general indoor space because of the characteristics of large space and the wear conditions of swimmers. Dew condensation by humid air not only makes mold on the floor, wall and roof but also decreases the durability of buildings by penetrating into their structures. In this study, the characteristics of the flow field, the temperature field and the humidity distribution in an indoor swimming pool have been examined by the numerical method to estimate the level of thermal comfort and the generation rate of dew condensation. The results showed that the dew condensation regions were spread widely at the eastern parts of the swimming pool due to the insufficient air flow rate with low velocity and temperature. To prevent the generation of dew condensation in a region, a sufficient warm air flow rate should be supplied to make an air mixing. The values of PMV at horizontal plane of 1.5 m height have the range of -1.0∼1.2, which means the suitable level for swimmers.