• Title/Summary/Keyword: Level converter

Search Result 728, Processing Time 0.023 seconds

Analysis and Simulation of Multi-Level Converter by means of Multiple Single Phase Combination Control (단상 다중 조합제어 Multi-Level 컨버터의 해석과 시뮬레이션)

  • Ahn, I.M.;Chun, J.H.;Lee, Y.H.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.355-357
    • /
    • 1999
  • Single-Phase multi-level AC-DC converter that is composed of diode bridge and switch is proposed. The number of the supply current level is depending on the individual current level of the converter. A converter circuit, the number of the level is equal to $2^{M+1}-1$, where M is the number of Switching Converter. The proposed circuit has converter with 31 current levels. When the number of current level is increased, smoother sinusoidal waveform can be obtained directly and it is possible to control the supply current almost continuously from zero to maximum without generating high voltage step changes as pulse with modulation technology. The technique illustrates its validity and effectiveness through the PSIM.

  • PDF

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Analysis of Acoustic Noise Characteristics of Jindo-Cheju HVDC (진도-제주 HVDC 변환설비 소음특성 분석)

  • Kim, Jae-Han;Kim, Chan-Ki;Lee, Seong-Doo;Kim, Jin-Young
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.574-576
    • /
    • 2010
  • HVDC converter station consists of a number of noise sources such as converter transformer, ac filter, cooling system and so on. In this paper, we analyzed the simulation results of the outdoor acoustic noise characteristics for HVDC converter station. It shows that maximum noise level in boundary of HVDC converter station exceeds regulation value. The main factors in generating maximum noise level are ac filter and converter transformer. Then we applied some soundproof countermeasure in HVDC converter station. Shielding wall is enough to reduce transformer noise level but not enough to reduce ac filter noise level. In case of ac filter, soundproof building is effective in satisfying noise level regulation in boundary of HVDC converter station. In addition, we also studied effects of season, soundproof woods, ground.

  • PDF

A Study on the Secondary Rectification-Methods for the Three-Level Converter

  • Bae, Jin-Yong;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper proposes a coupled inductor-based rectifier of a Three-Level (TL) DC/DC converter and compares the rectification methods of a TL converter. The CICDR- TL (Coupled Inductor Current Doubler Rectifier Three-Level) converter achieves ZVS (Zero Voltage Switching) for the switches in a wide load range. CDR (Current Doubler Rectifier) and CICDR Three-Level converter have low voltage and current ripple. Advantages and disadvantages of topology compared to the rectifier of bridge, center-tap, CDR, and CICDR are discussed. Experimental estimation results are obtained on a 27V, 60A DC/DC TL converter prototype for the 1.8kW, 40kHz IGBT based experimental circuit.

Hybrid ZVS Converter with a Wide ZVS Range and a Low Circulating Current

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.652-659
    • /
    • 2015
  • This paper presents a new hybrid soft switching dc-dc converter with a low circulating current and high circuit efficiency. The proposed hybrid converter includes two sub-converters sharing two power switches. One is a three-level PWM converter and the other is a LLC converter. The LLC converter and the three-level converter share the lagging-leg switches and extend the zero-voltage switching (ZVS) range of the lagging-leg switches from nearly zero to full load since the LLC converter can be operated at fsw (switching frequency) $\approx$ fr (series resonant frequency). A passive snubber is used on the secondary side of the three-level converter to decrease the circulating current on the primary side, especially at high input voltage and full load conditions. Thus, the conduction losses due to the circulating current are reduced. The output sides of the two converters are connected in series. Energy can be transferred from the input voltage to the output load within the whole switching period. Finally, the effectiveness of the proposed converter is verified by experiments with a 1.44kW prototype circuit.

SVPWM Strategies for Three-level T-type Neutral-point-clamped Indirect Matrix Converter

  • Tuyen, Nguyen Dinh;Phuong, Le Minh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.944-955
    • /
    • 2019
  • In this paper, the three-level T-type neutral-point-clamped indirect matrix converter topology and the relative space vector modulation methods are introduced to improve the voltage transfer ratio and output voltage performance. The presented converter topology is based on combinations of cascaded-rectifier and three-level T-type neutral-point-clamp inverter. It can overcome the limitation of voltage transfer ratio of the conventional matrix converter and the high voltage rating of power switches of conventional matrix converter. Two SVPWM strategies for proposed converter are described in this paper to achieve the advantages features such as: sinusoidal input/output currents and three-level output voltage waveforms. Results from Psim 9.0 software simulation are provided to confirm the theoretical analysis. Hence, a laboratory prototype was implemented, and the experimental results are shown to validate the simulation results and to verify the effectiveness of the proposed topology and modulation strategies.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Characteristic of SRM Drive using Multi-level Converter (멀티레벨 인버터를 이용한 SRM 운전특성)

  • Wang, Hui-Jun;Lee, Sang-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.100-102
    • /
    • 2007
  • In this paper, a modified multi-level convert for low cost high speed switched reluctance (SR) drive is proposed The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM, and lower voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

  • PDF

Module Multilevel-Clamped Composited Multilevel Converter (M-MC2) with Dual T-Type Modules and One Diode Module

  • Luo, Haoze;Dong, Yufei;Li, Wuhua;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1189-1196
    • /
    • 2014
  • A modular multilevel-clamped composited multilevel converter ($M-MC^2$) is proposed. $M-MC^2$ enables topology reconfiguration, power device reuse, and composited clamping. An advanced five-level converter ($5L-M-MC^2$) is derived from the concept of $M-MC^2$. $5L-M-MC^2$ integrates dual three-level T-type modules and one three-level neutral point clamped module. This converter can also integrate dual three-level T-type modules and one passive diode module by utilizing the device reuse scheme. The operation principle and SPWM modulation are discussed to highlight converter performance. The proposed $M-MC^2$ is comprehensively compared with state-of-the-art five-level converters. Finally, simulations and experimental results are presented to validate the effectiveness of the main contributions of this study.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.