• Title/Summary/Keyword: Level Shift

Search Result 897, Processing Time 0.028 seconds

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

Analysis of Korea's nuclear R&D priorities based on private Sector's domestic demand using AHP

  • Lee, Yunbaek;Son, Seungwook;Park, Heejun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2660-2666
    • /
    • 2020
  • Korea successfully achieved energy independence in the shortest period of time from being the poorest country in terms of energy 50 years ago through steady development of nuclear technology. In the past, the nuclear industry has been driven through government-centered policy development, public institution-based research, and industrial facility and infrastructure construction. Consequently, South Korea became a nuclear energy powerhouse exporting nuclear power plants to the UAE, surpassing the level of domestic technological independence. However, in recent years, the nuclear industry in Korea has experienced a decline in new plant construction since the Fukushima accident in Japan, which caused changes in public perspectives regarding nuclear power plant operation, more stringent safety standards on the operation of nuclear power plants, and a shift in governmental energy policy. These changes are expected to change the domestic nuclear industry ecosystem. Therefore, in this study, we investigate the priority of technology development investment from the perspective of experts in private nuclear power companies, shifting the focus from government-led nuclear R&D policies. To establish a direction in nuclear technology development, a survey was conducted by applying an analytic hierarchy analysis to experts who have worked in nuclear power plants for more than 15 years. The analysis items of focus were the 3 attributes of strategic importance, urgency, and business feasibility of four major fields related to nuclear energy: nuclear safety, decommissioning, radioactive waste management, and strengthening industrial competitiveness.

Optoelectronics Properties of In0.27Ga0.73N/GaN Multi-Quantum-Well Structure (In0.27Ga0.73N/GaN 다중 양자우물 구조에 대한 광전기적 특성)

  • Park, Hun-Bo;Bae, In-Ho;Kim, Ki-Hong
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.489-492
    • /
    • 2007
  • Temperature and injection current dependence of elctroluminescence(EL) spectral intensity of the $In_{0.27}Ga_{0.73}N/GaN$ multi-quantum-well(MQW) have been studied over a wide temperature and as a function of injection current level. EL peaks also show significant broadening into higher photon energy region with the increase of injection current. This is explained by the band-filling effect. When temperature is slightly increased to 300 from 15 K, the EL emission peak showed red-blue-red shift. It can be explained by the carrier localization by potential fluctuation of multiple quantum well and band-gap shrinkage as temperature increase. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents show a drastic difference. This unique EL efficiency variation pattern with temperature and current is explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields.

Analysis of Knowledge Base and Future Skills Needs through Patentometrics - Case of Battery Industry (특허정보분석을 활용한 지식단위의 변화와 미래숙련수요 분석 - 이차전지 사례를 중심으로)

  • Hwang, Gyu-Hee;Shim, We;Coh, Byoung-Youl
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.spc
    • /
    • pp.1209-1231
    • /
    • 2011
  • This study attempts to develop an analysis method on future skills needs for emerging new knowledge on the basis of technology outlook and patent analysis. It will extract knowledge base of patent classification for secondary battery, and will demonstrate that the density and centrality of knowledge base can be changed according to the paradigm shift of battery industry. Furthermore, on the basis of that, it will execute diagnosis on current related curriculum and present necessary improvement items of curriculum. This study tries not only to raise the utilizing level of patent analysis by demonstrating how patent analysis is used in future skills needs analysis, but also to advance the analysis method for future skills needs.

  • PDF

Optimization-Based Buyer-Supplier Price Negotiation: Supporting Buyer's Scenarios with Suppler Selection

  • Lee, Pyoungsoo;Jeon, Dong-Han;Seo, Yong-Won
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • Purpose - The paper aims to propose an optimization model for supporting the buyer-seller negotiations. We consider the price, quality, and delivery as evaluation criteria, also recognized as objectives for negotiation. Research design, data, and methodology - The methodology used in this paper involves the input-oriented DEA with the inverse optimization. Under the existence of several potential suppliers, the price would be considered to be the decision variable to conclude the negotiation so as to meet the desired level of the quality and delivery. The data set for six suppliers with three criteria is examined by the proposed approach. Results - We present the decision aid model by displaying the price spectrum as the changes of desired output levels. It overcomes the shortcomings from previous researches mainly based on the discrete types of scenario generations. This approach shows that the obtained results help the buyer understand the trade-offs between price and performance when he/she considers the negotiation. Conclusions - The paper contributes to the numerical models for buyer-supplier negotiation in that the model for the supplier evaluation and selection is closely linked with the model for negotiation. In addition, it eliminates the unrealistic negotiation strategy, and provides the negotiation strategies that the buyer would not shift the burden on suppliers by maintaining the current efficiency.

Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog;Yoo, Hae-Yong;Rho, Hyune-Mo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.63-70
    • /
    • 1998
  • Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

  • PDF

Biological indicators to monitor responses against climate change in Korea

  • Lee, Byoung-Yoon;Nam, Gi-Heum;Yun, Jong-Hak;Cho, Ga Youn;Lee, Jin Sung;Kim, Jin-Han;Park, Tae Seo;Kim, Kigyoung;Oh, Kyounghee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • The most useful criteria and selection procedures of biological indicators have been developed in Korea because they have taken into account local and national concerns on biological responses against climate change. On the basis of these criteria and selection procedures, 100 climate-sensitive biological indicator species were selected to predict biodiversity distribution shift by climate change and manage biological resources integratedly at the national level. It is expected that selection and monitoring of biological indicators by climate change will provide significant information to prepare protective strategies of vulnerable species against climate change and adaptive policies under the changing environment in Korea. In this paper, we have reviewed what kinds of criteria were considered in selecting bioindicators to assess responses of biological organisms against climate change. Definition and selection steps of bioindicators were proposed, and the 100 species of climate- sensitive biological indicators were selected out of 33,253 taxa reported in Korea.

Dual Modulation Driving for Poly-Si TFT Active Matrix OLED Displays (다결정 실리콘 박막 트랜지스터 Active Matrix OLED 디스플레이를 위한 이중 변조 구동)

  • 김재근;정주영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.17-22
    • /
    • 2004
  • We developed a new ANGLED display driving method which used both amplitude and pulse width modulation. For pulse width modulation, we divided a picture frame time into S sub-frames. For amplitude modulation, we used three OLED luminance(or current) levels which were controlled by TFT's gate voltages. By combining these two modulation methods, we obtained 35(=243) grey levels. And we designed a new data electrode driving circuit block with two shift registers without using DAC's. To verify the feasibility, we simulated the key circuit components by HSpice with TFT parameters extracted from current-voltage characteristics of 6${\mu}{\textrm}{m}$ channel length polysilicon TFT's. From the simulation results, we found that 320${\times}$240, dual scan, 243 grey level AMOLED display can be designed with this method.

Practical Silicon-Surface-Protection Method using Metal Layer

  • Yi, Kyungsuk;Park, Minsu;Kim, Seungjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.470-480
    • /
    • 2016
  • The reversal of a silicon chip to find out its security structure is common and possible at the present time. Thanks to reversing, it is possible to use a probing attack to obtain useful information such as personal information or a cryptographic key. For this reason, security-related blocks such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and RSA (Rivest Shamir Adleman) engines should be located in the lower layer of the chip to guard against a probing attack; in this regard, the addition of a silicon-surface-protection layer onto the chip surface is a crucial protective measure. But, for manufacturers, the implementation of an additional silicon layer is burdensome, because the addition of just one layer to a chip significantly increases the overall production cost; furthermore, the chip size is increased due to the bulk of the secure logic part and routing area of the silicon protection layer. To resolve this issue, this paper proposes a practical silicon-surface-protection method using a metal layer that increases the security level of the chip while minimizing its size and cost. The proposed method uses a shift register for the alternation and variation of the metal-layer data, and the inter-connection area is removed to minimize the size and cost of the chip in a more extensive manner than related methods.

Computational Study of 3-Aminophenol·(CO2)1 Cluster: CO2 Capture Ability of 3-Aminophenol

  • Sohn, Woon-Yong;Kim, Min-Ho;Kim, Sang-Su;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2806-2808
    • /
    • 2010
  • The structure of 3-aminophenol $(CO_2)_1$ cluster was computationally studied both in the ground and the lowest singlet excited electronic states. The ground state structure and binding energy of the cluster was investigated using the second-order M$\ddoot{o}$ller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit. The excited state geometry of the cluster was obtained at the second-order approximate coupled cluster (CC2) level with cc-pVDZ basis set, and the $S_0-S_1$ absorption spectrum was simulated by calculating Franck-Condon overlap integral. The ground state geometry of the global minimum with a very high binding energy of 4.3 kcal/mol was found for the cluster, due to the interaction between amino group and $CO_2$ in addition to the strong $\pi-\pi$ interaction between the aromatic ring and $CO_2$. The excited state geometry shows a very big shift in the position of $CO_2$ compared to the ground state geometry, which results in low intensity and broad envelope in the Franck-Condon simulation.