• Title/Summary/Keyword: Level Sensor

Search Result 1,655, Processing Time 0.027 seconds

Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor (웨이퍼 레벨 진공 패키징된 MEMS 자이로스코프 센서의 파괴 인자에 관한 연구)

  • 좌성훈;김운배;최민석;김종석;송기무
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2003
  • In this study, we carry out reliability tests and investigate the failure mechanisms of the anodically bonded wafer level vacuum packaging (WLVP) MEMS gyroscope sensor. There are three failure mechanisms of WLVP: leakage, permeation and out-gassing. The leakage is caused by small dimension of the leak channel through the bonding interface and internal defects. The larger bonding width and the use of single crystalline silicon can reduce the leak rate. Silicon and glass wafer itself generates a large amount of outgassing including $H_2O$, $C_3H_5$, $CO_2$, and organic gases. Epi-poly wafer generates 10 times larger amount of outgassing than SOI wafer. The sandblasting process in the glass increases outgassing substantially. Outgassing can be minimized by pre-baking of the wafer in the vacuum oven before bonding process. An optimum pre-baking temperature of the wafers would be between $400^{\circ}C$ and $500^{\circ}C$.

  • PDF

Development of an Portable Urine Glucose Monitoring System (휴대용 뇨당 측정 시스템의 개발)

  • 박호동;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.397-403
    • /
    • 2002
  • Urine glucose monitoring system is a self-monitoring system that display the glucose level by non-invasive measurement method. In this paper, We developed a noninvasive urine glucose monitoring system that improved defects of urine glucose measurement with a colorimeter method and invasive blood glucose measurement method. This system consist of bio-chemical sensor for urine glucose measurements, signal detecting part, digital and signal analysis part, display part and power supplying part. The developed bio-chemical sensor for the measurement of urine glucose has good reproducibility, convenience of handing and can be mass-produced with cheap price. To evaluate the performance of the developed system, We performed the evaluation of confidence about the detection of glucose level by a comparison between a standard instrument in measuring glucose level and the developed system using standard glucose solutions mixed with urine. Standard error was 2.85282 from the evaluation of confidence based on regression analysis. Also, In analysis of S.D(standard deviation) and C.V(coefficient of validation) that are important parameters to evaluate system using bio-chemical sensor, S.D was 10% which falls under clinically valid value, 15%, and C.V was under 5%. Consequently from the above results, compared to blood glucose measurement, the system performance is satisfactory.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Development and Application of STEAM Education Model using Scratch Programming and Sensor Board in Class of Elementary School Students (초등학생들이 수업시간에 스크래치 프로그래밍과 센서 보드를 활용한 STEAM교육 모형 개발과 적용)

  • Moon, Waeshik
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • STEAM learning, which combined software with hardware, can greatly increase algorithm improvement, problem-solving skills, integrated thinking ability etc. and can ultimately improve learning attitude and academic achievement. In this study, we developed STEAM learning model so that 6th graders who can fully understand the basic concept of programming can learn subject contents of national textbooks (5 kinds) with programming that combined six sensors attached Sensor_board with Scratch and applied it to 6th grade class and analyzed the results. As a result, the STEAM learning tool that combined Scratch with Sensor_board was analyzed to be suitable for most elementary school students to be evaluated. In the achievement evaluation of learning, 39.5% of students obtained more than 7 points out of perfect 10 in the average achievement level of 5 subjects so most students evaluated were analyzed to obtain satisfactory achievement. Therefore, STEAM learning using Scratch and Sensor_board, hardware is considered to be more effective than existing software-centered ${\times}$learning using only software.

Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process (CMP 공정중 박막 종류에 따른 AE 신호 분석)

  • Park, Sun Joon;Lee, Hyun Seop;Jeong, Hae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.863-867
    • /
    • 2014
  • In this study, an acoustic emission (AE) sensor was used for measuring the abrasive and molecular-scale phenomena in chemical mechanical polishing (CMP). An AE sensor is a transducer that converts a mechanical wave into an electrical signal, and is capable of acquiring high-level frequencies from materials. Therefore, an AE sensor was installed in the CMP equipment and the signals were measured simultaneously during the polishing process. In this study, an AE monitoring system was developed for investigating the sensitivity of the AE signal to (a) the variations in the material properties of the pad, slurry, and wafer and (b) the change in conditions during the CMP process. This system was adapted to Oxide and Cu CMP processes. AE signal parameters including AE raw frequency, FFT, and amplitude were analyzed for understanding the abrasive and molecular-level phenomena in the CMP process. Finally, we verified that AE sensors with different bandwidths could function in complementary ways during CMP process monitoring.

Effectiveness Analysis for the Precision Guided and Controled Underwater Vehicle system with Integrated Navigation System (복합항법센서를 갖는 수중운동체의 정밀 유도제어 정확도 분석)

  • Han, Yongsu;Hyun, Chul;Jeong, Dongmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2751-2757
    • /
    • 2015
  • To obtain the system requirement specification in the beginning of the precision guidance and control system development, the effectiveness and reliability analysis for the system are necessary. The main purpose of this research is to obtain the system requirement specification by carrying out the effectiveness analysis using the modeling and simulation(M&S) scheme. M&S model is constructed using 6-DOF dynamic model, environment model, guidanc -navigation & control model. Assume that the navigation sensor is consist of inertial navigation sensor(INS) and doppler velocity log(DVL), and the speed and direction of current is environment parameter. The effectiveness analysis is carried out using circular error probability(CEP) and variance analyze scheme. Also, the effectiveness analysis is utilized for cost-performance analysis considering the cost of commercial INS and DVL sensor. This paper shows the high-level INS and the low-level DVL configure a high price-performance integrated navigation system.

Design and Implementation of a Multi-level Simulation Environment for WSN: Interoperation between an FPGA-based Sensor Node and a NS3 (FPGA 기반 센서 노드와 NS3 연동을 통한 다층 무선 센서 네트워크 모의 환경 설계 및 구현)

  • Seok, Moon Gi;Kim, Tag Gon;Park, Daejin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2016
  • Wireless sensor network (WSN) technology has been implemented using commercial off-the-shelf microcontrollers (MCUs), In this paper, we propose a simulation environment to realize the physical evaluation of FPGA-based node by considering vertically cross-layered WSN in terms of physical node device and network interconnection perspective. The proposed simulation framework emulates the physical FPGA-based sensor nodes to interoperate with the NS3 through the runtime infrastructure (RTI). For the emulation and interoperation of FPGA-based nodes, we extend a vendor-providing FPGA design tool from the host computer and a script to execute the interoperation procedures. The standalone NS-3 is also revised to perform interoperation through the RTI. To resolve the different time-advance mechanisms between the FPGA emulation and event-driven NS3 simulation, the pre-simulation technique is applied to the proposed environment. The proposed environment is applied to IEEE 802.15.4-based low-rate, wireless personal area network communication.

Statistical Analysis for Assessment of Fingerprint Sensors (지문 인식 센서 평가를 위한 통계학적 분석)

  • Nam Jung-Woo;Kim Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.105-118
    • /
    • 2006
  • The purpose of this research is twofold. The first is to develop the measures for evaluating performance of fingerprint sensor modules quantitatively and objectively. The second is to present the methodology for evaluating compatibilities among disparate fingerprint sensors. This paper focuses on the performance evaluation not of fingerprint authentication algorithm but of fingerprint sensors. Presented in this paper are several indicators and their measuring schemes such as the actual resolution of fingerprint images, the level of distortion by horizontal and vertical resolutions of fingerprint image, the intensity distribution for various illuminating conditions. Nine commercial sensor modules have been tested and the test results are expressed by using 95% confidence interval based on 50 acquired fingerprint images. The experimental results are compared with the manufacturer's sensor specification.

Application of the Recursive Contract Net Protocol for the Threshold Value Determination in Wireless Sensor Networks (무선 센서 네트워크에서 경계값 결정을 위한 재귀적 계약망 프로토콜의 적용)

  • Seo, Hee-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • In ubiquitous sensor networks, sensor nodes can be compromised by an adversary since they are deployed in hostile environments. False sensing reports can be injected into the network through these compromised nodes, which may cause not only false alarms but also the depletion of limited energy resource in the network. In the security solutions for the filtering of false reports, the choice of a security threshold value which determines the security level is important. In the existing adaptive solutions, a newly determined threshold value is broadcasted to the whole nodes, so that extra energy resource may be consumed unnecessarily. In this paper, we propose an application of the recursive contract net protocol to determine the threshold value which can provide both energy efficiency and sufficient security level. To manage the network more efficiently, the network is hierarchically grouped, and the contract net protocol is applied to each group. Through the protocol, the threshold value determined by the base station using a fuzzy logic is applied only where the security attack occurs on.