• Title/Summary/Keyword: Levee failure

Search Result 51, Processing Time 0.024 seconds

Model Tests for Deriving Failure Parameter during Levee Overflow (제방 월류시 붕괴매개변수 도출을 위한 모형실험)

  • Kim, Jin-Man;Cho, Won-Beom;Choi, Bong-Hyuck;Oh, Eun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • According to the damage investigation in 2002, the failures of river levee were caused by overflow, erosion, and unstable body conditions due to piping, inappropriate embanking materials, and poor compaction. Especially, overflow was identified as a main reason that induces levee failure by 39.5% from the distribution of failure types. The major parameters, such as levee collapsing angle (${\theta}$), levee collapsing rate (k) affect inundation velocity and area size during the analysis of inundation modeling, however, domestic research effort on this area is still insufficient. In this paper authors conducted levee failure experiments of 4 levee height types, 0.20 m, 0.25 m, 0.30 m, and 0.40 m based on theassumption of Froude Similarity (${\lambda}_{Fr}=1$). As a result, the authors suggested a levee failure mechanism according to the levee heights (H), a collapse extension lengthwhich is around, levee collapse angle (${\theta}$), levee collapse rate (k).

Model Tests for Examination of Overflow Failure Mechanism on River Levee (하천제방의 월류 붕괴 메커니즘 규명을 위한 모형실험)

  • Kim, Jin-Man;Park, Min-Cheol;Moon, In-Jong;Jin, Yoon-Hwa
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2017
  • This research conducted the two types of model tests to examine the failure parameters by levee overflow, those were the pilot-scale levee (model height 0.4~0.8 m) and real scale levee (model height 1.0 m). The procedure of levee failure by overflow was succeeded to the following three steps: At first step, the local scouring on levee slope was happened and the overflow velocity was increased slowly. At second step, the enlarged scouring surface and the rapid overflow velocity were succeeded. At last, the levee section was broken totally and the overflow velocity was decreased because of the wide failure surface of levee. The levee failure angle (${\theta}$) was appeared bigger than slope failure angle of Rankine earth pressure. The enlarged levee height (H) made the faster overflow velocity (${\upsilon}$) of the levees, therefore additional tractive force was applied to it, futhermore the failure angle (${\theta}$) and failure surface (A) were enlarged. Because the sand sample for pilot-scale and real scale tests had the same diameter, the critical scouring velocity of each type was also the same, and the scouring properties were governed by variation of overflow velocity.

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

Analysis of River Levee Failure Mechanism by Piping and Remediation Method Evaluation (파이핑에 의한 하천제방 붕괴 메카니즘 분석 및 대책공법 평가)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.600-608
    • /
    • 2017
  • The presence of piping in a levee body allows water seepage to occur by producing a large cavity or water tunnel within it, ultimately resulting in the failure of the river levee and differential settlement. In order to properly cope with river levee failure due to piping and establish a proper remediation method for this problem, it is necessary to analyze the failure mechanism of the river levee due to piping. Therefore, this study analyzed the shape and mechanism of river levee failure due to piping through small-scale and large-scale models and evaluated the seepage pressure distribution characteristics in the hydraulic well, which has been suggested as a remediation method for piping. According to the results of this study, as the safety factor for the piping in the river levee decreased, the river levee failure shape was more clearly shown through the small-scale model test. In the large-scale model test, the type of local damage to the levee due to the piping was identified and the evaluation showed that the hydraulic well had the largest effect on the inhibition of piping below the center of the well. A follow-up study is needed to confirm the reliability of the results. However, it is thought that this study can be utilized as the baseline data for research into the piping-induced river levee failure mechanism and for the preparation of a remediation method.

Damage Types of Levee and its Maintenance and Repair (제방의 손상 유형 및 보수보강)

  • Moon, Dae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.144-169
    • /
    • 2010
  • In 2002, property loss caused by failure or leakage of existing river levee structures was about 1.8 trillion in Korean Won, and furthermore in which damages of river structures are getting more severe due to characteristics of extremely extraordinary rain such as torrential rain in the locality or guerrilla heavy rain. In this regards, this paper collects and analyzes those damage records and costs for repair by statistic method, and moreover categorizes the causes of failure, erosion and overtopping of levee structures in large and small scale rivers threatened frequently by typhoon and heavy rainfall. It is believed that the results from the analyses can be used as a basic source in developing criteria of standards for design, construction, maintenance and inspection(or diagnosis) of hydraulic structures such as levee and drain conduit.

  • PDF

Experimental Study on Levee Monitoring System for Abnormality Detection Using Fiber Optic Temperature Sensing (광섬유 온도 센싱을 활용한 제방의 이상 감지 모니터링 시스템에 대한 실험 연구)

  • Ahn, Myeonghui;Ko, Dongwoo;Ji, Un;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • Medium-scale levee experiments were performed to monitor the infiltration and failure of levee body by applying fiber optic temperature sensing. In this study, bio-polymer soil was spread in the levee slope to increase the strength and intensity. Therefore, the infiltration and failure by overflows were produced in a different way compared to general soil type of levees. This was also observed in the experiment data for temperature changes monitored by fiber-optic distributed temperature sensing system. Through the analysis of temperature changes at specific location by time, the location and initiation time for physical changes and infiltration in levee body could be identified based on temperature variation. In this experiment, the time of rapid changes in temperature was ahead in the inland slope rather than the forceland slope. It was corresponding to the levee failure sequence of first inland slope failure and then the forceland slope failure.

Applicability of Practical Reliability Analysis to Develop Fragility Curves for Levee (제방의 취약도 곡선 작성을 위한 실용적 신뢰성 해석의 적용성)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.19-30
    • /
    • 2022
  • Developing a fragility curve for the levee requires calculating the probability of failure according to the water level for each failure mode. Since probabilistic analysis requires iterative analysis to account for variability in geotechnical parameters, the fragility curve development inevitably requires many iterative calculations. Therefore, approximate probabilistic analysis techniques are usually applied to reduce the amount of calculation in developing the levee fragility curve. However, their accuracy has not been determined clearly. This study calculated the failure probability of slope and piping failure mode for an actual levee through probabilistic methods, such as FOSM, PEM, and MCS. Then, the fragility curve of the levee according to the water level was developed. The results of the approximate methods: FOSM and PEM, were compared with those of MCS to evaluate the applicability to the fragility curve for slope and piping failure mode.

GIS Based Flood Inundation Analysis in Protected Lowland Considering the Affection of Structure (구조물의 영향을 고려한 GIS기반의 제내지 홍수범람해석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.1-17
    • /
    • 2009
  • In recent years, most of flood damage is associated with the levee failure. The objective of this study is to predict flow depths, flood area, flooding time and flood damage through flood inundation analysis considering the overflow of levee and the characteristics of levee failure. The hydrological parameters were extracted from GIS data such as DEM, land cover and soil map to estimate levee failure discharge. In addition, the characteristics of flood wave propagation could be accurately predicted as flood inundation analysis was accomplished considering the affection of structure within protected lowland and hourly prediction of flooded areas and estimation of flood strength will be utilized as basic data for the flood defence and establishment of measure to reduce flood damage.

  • PDF

Hazard Evaluation of Levee by Two-Dimensional Hydraulic Analysis (2차원 수리해석에 의한 하천 제방 위험도 평가분석)

  • Park, Jun Hyung;Kim, Tae Hyung;Han, Kun Yeun
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • Levee safety is being evaluated using one of the several failure causes including overtopping, infiltration and erosion or 1D hydraulic analysis considering physical characteristics of levee in practical engineering works. However, mentioned evaluation methods are not able to consider various failure causes of levee at the same time and to get reliable results where requires the accurate topographic information. This study proposed the flood hazard index which is able to consider several hazard factors involving overtopping, infiltration and erosion risk simultaneously. The index was generated from results of 2D hydraulic analysis reflecting accurate topographic information. The study areas are the confluences of the Nakdong River and two streams(Gamcheon and Hoecheon). Levee safety was evaluated using results based on 2D hydraulic analysis considering riverbed changes of before and after dredging work in the study area. This study will contribute to estimate the reliable safety evaluation of levee where may have hazards during extreme flood events.

An Experimental Study on the Collapse Phase of a River Leeve(I) -Effects of the Geometric Characteristics of Cross Section (하천제방 붕괴 양상의 실험적 연구(I) - 단면의 기하학적 특성치의 영향)

  • Lee, Sang-Tae;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.141-154
    • /
    • 2001
  • An experimental study was performed to investigate the effects of levee crest width and the slope steepness on levee break due to overtopping flow. The phenomenon of bank failure can be described in 4 stages. In this study, the magnitudes of breach width, breach depth peak discharge, and scouring shape at the break site were measured, and the result shows that peak discharge will be reduced and breach duration extended by widening the crown width and lessening the levee slope steepness. The breach width was narrower and the breach depth deeper, as the levee crest width become wider or the slope steeper. And, the bed scour depth was deeper and steeper, as the levee crest crest width become narrower or the slope milder.

  • PDF