• Title/Summary/Keyword: Levee Design

검색결과 63건 처리시간 0.27초

A Study of alternative to rational design of Levee (하천제방의 합리적인 설계 방안)

  • Kim, Jin-Man;Choi, Bong-Hyuck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.119-123
    • /
    • 2010
  • Causes of the levee collapse are directly or indirectly associated with geotechnical engineering as well as hydraulics. In this paper, literature survey and analysis were conducted to present the alternatives in geotechnical engineering issues for rational levee design. The alternatives include the reasonable river-bed soil utilization and precautions of numerical analysis and slope stability analysis, disruption type and improvement method of drainage facility.

  • PDF

Evaluation of Overtopping Risks of Levee by using Reliability Analysis (신뢰성 해석에 의한 제방의 월류 위험도 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Shim, Jae-Wook
    • Journal of Industrial Technology
    • /
    • 제29권A호
    • /
    • pp.101-110
    • /
    • 2009
  • Due to frequent occurrence of a localized torrential downpour caused by global warming and change of outflow tendency caused by rapid urbanization and industrialization, risk analysis must be carried out in levee design with uncertainty. In this study, reliability analysis was introduced to quantitatively evaluate the overtopping risk of levee by the uncertainty. First of all, breaking function was established as a function of flood stage and height of levee. All variables of breaking function were considered as random variables following any distribution functions, and the risk was defined as the possibility that the flood stage is formed higher than height of levee. The risk evaluation model was developed with AFDA (Approximate Full Distribution Approach). The flood stage computed by 2-D numerical model FESWMS-2DH was used as input data for the model of levee risk evaluation. Risk for levee submergence were quantitatively presented for levee of Wol-Song-Cheon.

  • PDF

An Overview on Technology and Research of Dam and Levee in Korea (댐 및 제방의 기술 및 연구 현황)

  • Shin, Dong-Hoon;Kim, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.319-334
    • /
    • 2009
  • This paper describes an overview of technology and research of dam and levee in Korea. In order to trace the development of dam and levee construction technology, history of design and construction of them is briefly reviewed, and their statistics including type, number and purpose of those hydraulic structures in Korea are dealt with. Furthermore, current status of research on the mentioned structures is also reviewed based on the papers published in Korean societies such as Korean Society of Civil Engineers and Korean Geotechnical Society. Finally state-of-the-art equipment and technology to investigate the safety conditions, and hence to enhance or rehabilitate their stability and dam and levee systems, respectively, are introduced here.

  • PDF

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • 제51권spc1호
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Levee Stability Assessment Depending on Levee Shape and Flood Wave (제방형상과 홍수파형에 의한 제방의 파이핑 안정성 평가)

  • Kang, Taeun;An, Hyunuk;Lee, Gwangman;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • 제47권4호
    • /
    • pp.307-319
    • /
    • 2014
  • Because of the rapid rising of water related disasters due to the global warming, the extreme design criteria of levee construction for severe flood has been applied in several developed countries such as USA and Netheland. In Korea, the national river restoration projects were carried out on 4 major rivers in recent several years. The projects consisted of riverbed dredge and levee reinforcement, and new construction have caused wide change of river environment. However, concrete countermeasures for levee safety and river management have not been suggested until now. Therefore, this study assesses the levee safety of Yulji levee located in Hoechon, Nakdong Basin, where the Levee Seepage Monitoring System installed. The stability of levee is assessed based on the simulation performed by SEEP/W(2D unsaturated seepage model) and the simulated results are compared with the observed data. The effects of the flood wave and levee shape on the levee safety are investigated through several simulations.

Applying the Polder Levee of the Stream Specific by Using Hydordynamic Model (수치해석을 이용한 윤중제 흐름특성해석 적용성)

  • Choi, Han-Kuy;Kim, Jang-Uk;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • 제28권B호
    • /
    • pp.193-198
    • /
    • 2008
  • When the existing polder levee was constructed, the river's numerical analysis decided the bank raise by applying the planned flood stage or by using the result from the sectional 1st dimensional numerical analysis. But, it was presented that there is a limitation in the 1st dimensional value analysis when the structure like the polder levee obstructs the special shaped running water flow. Therefore, in order to verify the numerical value applicability when the polder levee is constructed, this report compared each other through the 1st and 2nd dimensional numerical analysis and the mathematical principle model laboratory. In case of the polder levee construction through the numerical analysis and the mathematical principle model laboratory, it was decided that there was no big problem in the 1st dimensional numerical analysis applied design, considering the uncertainty of mathematical principle analysis though the first dimensional numerical analysis was calculated a little bigger than the second. But, after construction, it was found that the water level deviation of the 1st, 2nd occurred biggest at the place where the flow was divided into two. Also, as a result of comparing the 1st, 2nd dimensional numerical analysis with the mathematical principle model laboratory, it was confirmed that the 1st numerical analysis applied design decreased the modal safety largely, as the left side water level was calculated smaller more than 0.5m in case of the 1st dimensional numerical analysis.

  • PDF

Experimental Analysis for Characteristics of Bank-Scour around Barrier (수리실험을 통한 보 연결부 제방 세굴 특성 분석)

  • Jeong, Seok Il;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • 제32권4호
    • /
    • pp.34-39
    • /
    • 2017
  • Typical flow regime of overflow at barrier or weir constructed in mid and small streams becomes as the submerged flow during most flood events. One of major causes of barrier failure has been reported as the levee-scour near the conjuction node between barrier and levee. However, most related design guidelines in Korea have not mentioned about the protection of levee around barrier or weir in detail. Furthermore, most previous researches have focused on the flow characteristics of overflow around several types of weirs but they did not have considered the material properties of levee itself. In this study, local scour near barrier was investigated with different material properties of levee under the submerged overflow condition which is assumed to reenact a flood event. Based on results from Fritz et al. and Mavis et al., a theoretical formula was also proposed in initial stage of laboratory experiments. And hydraulic experiments were carried out for the verification of the proposed formula. Levee was installed in the prismetic trapezoidal open channel and most parts were made of concrete except for movable section in which scour was expected to occur for the efficiency of experimental procedure. Each compaction of movable section in levee was followed by the basis of the KS F 2312. Further, after performing the experiments to find the optimum water content for each sediment, the specific amount of water was injected before flowing water. The difference between the proposed theoretical formula and experiment results was not much but considerable, which might be caused by the effect of compaction. For theoretical approach, it seemed that the formula did not take into account the compaction of levee, thus the correction coefficient for levee compaction determined in the literature was considered. Finally, the formula for the length of scour around barrier or weir was proposed, which can be useful to predict a levee in the reference design of revetment in mid and small streams. As shortly future study, scour length of levee around barrier or weir under different flow conditions such as perfect overflow condition will be studied and it will be able to contribute to suggest the design formula or criteria under all overflow conditions near barrier or weir.

Damage Types of Levee and its Maintenance and Repair (제방의 손상 유형 및 보수보강)

  • Moon, Dae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.144-169
    • /
    • 2010
  • In 2002, property loss caused by failure or leakage of existing river levee structures was about 1.8 trillion in Korean Won, and furthermore in which damages of river structures are getting more severe due to characteristics of extremely extraordinary rain such as torrential rain in the locality or guerrilla heavy rain. In this regards, this paper collects and analyzes those damage records and costs for repair by statistic method, and moreover categorizes the causes of failure, erosion and overtopping of levee structures in large and small scale rivers threatened frequently by typhoon and heavy rainfall. It is believed that the results from the analyses can be used as a basic source in developing criteria of standards for design, construction, maintenance and inspection(or diagnosis) of hydraulic structures such as levee and drain conduit.

  • PDF

Numerical Analysis in Hydrograph Determination for Sluice Gate installed Levee (배수통문이 설치된 제방의 설계수위파형결정에 관한 수치해석)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • 제14권4호
    • /
    • pp.1-9
    • /
    • 2015
  • According to national regulations and its commentary, such as Rivers Design Criteria & Commentary (KWRA, 2009), Foundation Structure Guideline and its Commentary(MLTM, 2014 and KGS, 2009), the integrity evaluation of river levee includes slope stability evaluation of both riverside/protected low-land and piping stability evaluation with respect to foundation and levee body along with water level conditions. In this case the design hydro-graph can be the most important input factor for the integrity evaluation, however it is fact that the national regulations do not provide any proper determination methods regarding hydro-graph. The authors thus executed an integrity evaluation of sluice gate in levee by changing each hydro-graph factor, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency, in order to suggest a determination method of reasonable hydro-graph. As a result, the authors suggested that at least over 57 hours of rising ordinary water level and over 53 hours of lasting flood water level should be considered for the design hydro-graph of sluice gate in levee at Mun-san-jae.

A Study on Estimation of Levee Safety Map for Determining the Priority of River Maintenance (하천 유지관리 우선순위 결정을 위한 제방안전도맵 산정방법 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권12호
    • /
    • pp.17-25
    • /
    • 2017
  • Owing to recent climate change, the scale of rainfall tends to increase gradually and the risk of flooding has increased. Therefore, the importance of improving the levee management and disaster response is increasing. Levee management in Korea is carried out at the level of damage recovery after the occurrence of damage. Therefore, it is necessary to develop a technology for predicting and managing the levee safety with proactive river management. In this study, a method to estimate the safety against erosion and overflow was suggested. A map of levee safety that can be used as basic data is presented by displaying the levee safety on the map. The levee erosion safety was calculated as the ratio of the internal and external force for each shore type. The levee overflow safety was calculated as the ratio of the maximum conveyance and design flood. The maximum conveyance was a discharge when the level of the river was equal to the level of the levee crown. The levee safety was classified into 5 grades: very safe, safe, normal, dangerous, and very dangerous. As a research area from downstream of Nam River Dam to Nakdong River Junction, the levee safety against erosion and overflow was estimated for all levees and all cross-sections of the river. The levee safety was displayed on a map using GIS. Through the levee safety map as a result of this study, the levee safety can be observed intuitively. Using the levee safety map, a maintenance plan for a river can be easy to build. This levee safety map can be used to help determine the priority of investment for efficient budget used.