• Title/Summary/Keyword: Leukemic cell

Search Result 174, Processing Time 0.024 seconds

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실 세포고사 유도 효과)

  • Kwon Kang Beom;Kim Eun Kyung;Han Mi Jeong;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.903-907
    • /
    • 2005
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

Mechanism of Apoptotic Cell Death by 2,4,3',5'-Tetramethoxystilbene in Human Promyelocytic Leukemic HL-60 Cells

  • Lee, Sang-Kwang;Chae, Ah-Reum;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.145-149
    • /
    • 2007
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a synthetic trans-stilbene analogue acting as a potent inhibitor of human cytochrome P450 1B1, induces apoptotic cell death in human cancer cells. In the present studies, we report the mechanisms of apoptotic cell death by TMS in human promyelocytic leukemic HL-60 cells. We found that treatment of HL-60 cells with TMS suppressed the cell growth in a concentration-dependent manner with $IC_{50}$ value of about 0.8 ${\mu}M$. Immunoblot experiments revealed that DMHS-induced apoptosis was associated with cleavage of poly (ADP-ribose) polymerase. The release of cytochrome c from mitochondria into the cytosol was significantly increased in response to TMS. TMS caused activation of caspase-3 in a concentration-dependent manner and TMS-mediated caspase-3 activation was partially prevented by the caspase inhibitor, zVAD-fmk. Interestingly, we found that the cytotoxic effect of anticancer drugs such as paclitaxel, docetaxel, or etoposide was enhanced in the presence of TMS. Simultaneous treatment with TCDD also significantly increased cytotoxic effects of TMS alone or TMS and anti-cancer agents. Taken together, our present results indicated that TMS leads to apoptotic cell death in HL-60 cells through activation of caspase-3 activity and release of cytochrome c into cytosol. The ability of TMS to increase cytotoxic effect of anticancer drugs may contribute to its usefulness for cancer chemotherapy.

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실(瓜蔞實)의 세포고사 유도 효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Han, Mi-Jeong;Ryu, Do-Gon
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2006
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer. Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-Inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly. The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

  • PDF

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Anti-proliferative Effects by Aqueous Extract of Cordyceps Militaris in Human Leukemic U937 Cells (동충하초 추출물에 의한 U937 인체 백혈병 세포의 성장억제 효과)

  • Park, Dong-Il;Seo, Sang-Ho;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.452-458
    • /
    • 2005
  • Cordyceps militaris is a medicinal fungus, which has been used for patient suffering from cancer in Oriental medicine. It was reported previously that C. militaris extracts are capable of inhibiting tumor growth, however, the anti-poliferative effects of human cancer cells have not been poorly understood. In this study, to elucidate the growth inhibitory mechanisms of human cancer cells by treatment of aqueous extract of C. militaris (AECM) we investigated the anti-proliferative effects of AECM in human leukemia U937 cell line. AECM treatment inhibited the growth of U937 cells and induced the apoptotic cell death in a concentration-dependent manner, which was associated with morphological changes. We observed the up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1) by p53-independent manner and activation of caspase-3 in AECM-treated U937 cells, however, the activity of caspase-9 was remained unchanged. Additionally, AECM treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-1 (TEP-1). Taken together, these findings suggest that AECM-induced inhibition of human leukemic cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and C. militaris may have therapeutic potential in human lung cancer.

The Effect of Rhus verniciflua Stokes Extract on Apoptosis and Autophagy in human leukemic cell line (MOLT-4) (칠피(漆皮)가 급성림프구성백혈병 세포주 MOLT-4의 세포자멸과 자가포식에 미치는 영향)

  • Juyoung Lee;Jang-Hoon Lee;Youngchul Kim
    • The Journal of Korean Medicine
    • /
    • v.45 no.3
    • /
    • pp.154-167
    • /
    • 2024
  • Objectives: This study was performed to investigate the effects of Rhus verniciflua Stokes (RVS) on apoptosis and autophagy in the human leukemic cell line, MOLT-4. Methods: Cell viability was measured by MTS/PMS assay, and cell cycle distribution was analyzed by flow cytometry. The expression levels of mRNA implicated in apoptosis and ER-stress were investigated with RT-qPCR. Lastly, apoptosis- and autophagy-related protein expressions were measured by Western blot analysis. Results: RVS inhibited proliferation of MOLT-4 in a dose-dependent manner over 24, 48 and 72 hours. RVS treatment also induced an increase in subG1 phase. Exposure to RVS increased the expression of the mRNAs encoding Bax and caspase-3, while decreasing the expression of Bcl-2 mRNA, suggesting that RVS induced apoptosis in MOLT-4 cells. Additionally, RVS extract up-regulated ER-stress related mRNAs such as IRE1α, CHOP, PERK and ATF6. Changes in RVS extract-induced apoptosis and autophagy proteins on MOLT-4 cells were also investigated. The level of Bcl-2 was decreased, whereas the levels of Bax, caspase-3, AMPK, Beclin-1, Atg5, p62, and LC3II were increased. Conclusion: These results suggest that RVS would be beneficial in the treatment of Acute Lymphoblastic Leukemia.

Immunological Studies on the Surface Antigens of Tumor Cell (II) Introduction to Immunological Studies on the Development and Cell Differentiation of the Leukemia Cell (종양세포 표면항원에 대한 분자면역학적 연구(II) 백혈병세포의 발생과 세포분화에 관한 연구)

  • 김한도;김정락박병채
    • The Korean Journal of Zoology
    • /
    • v.34 no.4
    • /
    • pp.469-478
    • /
    • 1991
  • The CALLA on the surface of leukemic cell lines, recognized by our monoclonal antibody. KP-22(IgG1, K) was one of cell surface glycoproteins having moi. wt. of approximately 100,000 dalton, and could be shed in spent medium or endocytosed when binding the cognate antidoby, KP-22. In the presence of cognate antibodies, 60% of CALLAS recogniEed by KP-22 MAs were modulated and cleared from the cell surface during 24 hrs, and approximaetely 35% of them was endocytosed and 25%, was shed in spent medium. The reappearance of the membrane CALLA after modulation by the KP-22 required at least 6 hours and supposed to be newly synthesized molecules.

  • PDF

Studies on Production of Monoclonal Antibodies Reactive with T-Cell Leukemia (인형 T세포 백혈병에 대한 단세포군 항체 생산에 관한 연구)

  • 서병석;김원배;최응칠;김병각
    • YAKHAK HOEJI
    • /
    • v.31 no.5
    • /
    • pp.253-265
    • /
    • 1987
  • To develop hybridomas secreting monoclonal antibodies to be used as unlimited sources of reagents indispensable for the diagnosis and treatement of leukemic malignancy, a monoclonal antibody was generated to human pre-T leukemia cells (Jurkat). Hybridomas were produced against Jurkat cell line by fusing spleen cells from hyperimmunized mice with murine plasmacytoma cells (P3$\times$63Ag8. V653). One monoclonal antibody derived from this fusion, designated DMJ-2 was reactive with T-cell lines (Jurkat, Molt-4 and RPMI-8402) and normal peripheral E-rosette forming T cells, but unreactive with B-cell lines (Daudi, Nalm-6) and non-T, non-B cell line (K562). Conclusively DMJ-2 reactive with mature and immature T-lineage lymphoid cells.

  • PDF

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Apoptotic effect of Me fraction of Scutellaria barbata in human leukemic U937 cells (반지련의 Methyl chloride 분획이 U937 단핵 세포 암주의 세포고사에 미치는 영향)

  • Cha Yun Yi;Lee Eun Ok;Lee Ju Ryoung;Kang In Cheol;Park Young Doo;Ahn Kyoo Seok;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.629-632
    • /
    • 2003
  • Scutellaria barbata has been used as a traditional Chinese Herb for treating liver, lung and rectal tumors. In the present study, cytotoxic effect of Scutellaria barbata MC fradtion was investigated and it was found to inhibit proliferation of human leukemic U937 cells with an IC50 of approximately 10 μg/ml in a dose-dependent manner. We also demonstrated that Scutellaria barbata MC fraction caused apoptosis in U937 cells. In the flow cytometric assay, the MC fraction-treated U937 cells showed an increase in hypo-diplold Sub G1 DNA contents. DNA fragmentation was observed by TUNEL assay. An increase of Bax:Bcl-2 ratio, activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) were demonstrated by western blot analysis. Taken together, these results exerted that the MC fraction suppressed human leukemic U937 cell proliferation by inducing apoptosis via the mitochondrial pathway.