• Title/Summary/Keyword: Leukemic cell

Search Result 174, Processing Time 0.017 seconds

Differential Effects of Green Tea Polyphenol in the ${\gamma}-irradiation$ Induced Human Leukemic and Lymphoblastic Cell Damage (녹차 폴리페놀이 감마선조사에 의한 백혈병과 림프구모세포의 손상에 미치는 영향의 차이)

  • Jeong, Hwan-Jeong;Kim, Eun-Mi;Min, Jung-Jun;Bom, Hee-Seung;Kim, Young-Ho;Jeong, Young-Do;Kim, Chang-Guhn
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • Purpose: The green tea polyphenol (GTPP) has been known to exert antioxidant activity as a radical scavenger as well as cancer preventive and cancer growth inhibition effect. The aim of this study was to identify whether GTPP not only potentiate the growth inhibition effect in ${\gamma}-irradiated$ human cancer cell but also exert protection action for irradiated human normal cell. Materials and Methods: GTPP (80% catechin including >45% EGCG) added in the HL60, human leukemia, and NC37, human lymphoblast, before irradiation. After establishing the amount of GTPP and the dose of radiation, the cells were treated with the GTPP for 6 hours and irradiated with the determined doses. Results: Viability when $10{\mu}g/ml$ GTPP added before ${\gamma}-irradiation$ with 1 Gy to NC37 cells was not different in comparison with control but it when was irradiated with 3 Gy significantly different (1 Gy;P=0.126, 3 Gy;P=0.010). $20{\mu}g/ml$ GTPP did not show significant difference in both NC37 cells irradiated with 1 Gy and 3 Gy (1 Gy;P=0.946, 3 Gy;P=0.096). Viabilities were significantly decreased with concentration of additional GTPP in HL60 with 1 or 3 Gy (1 Gy $69.0{\pm}1.7%\;vs\;42.4{\pm}1.3%,\;3\;Gy;\;66.9{\pm}3.9%\;vs\;44.2{\pm}1.6%$). Conclusion: In vitro study, we certified that when the cells were irradiated with dose below 3 Gy, GTPP provide not only anticancerous effect against cancer cells but also radioprotective effect in normal cells simultaneously. Theses results suggest the possibility that consumption of green tea could give the radioprotective effect and maximize the effect on internal radiation such as radioiodine therapy concomitantly.

Surface Marker Analysis in Acute Leukemias (백혈병의 면역학적 표지자검사의 결과분석)

  • Moon, Jin-Young;Lee, Chae-Hoon;Kim, Kyung-Dong;Kim, Chung-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.359-369
    • /
    • 1997
  • We studied the expression of the cell surface antigen associated with myeloid and lymphoid leukemias on bone marrow or peripheral blood blast cells from 153 leukemic patients including 61 cases of acute myelogenous leukemias(AML), 46 of acute lymphocytic leukemias(ALL) and 12 of acute leukemias. They were analyzed by direct or indirect immunofluorescence method for reactivity with the monoclonal antibodies to B cells(CD10, CD19, SmIg), T cells(CD2, CD5, CD7, CD3, CD4, CD8), myeloid antigen(CD13, CD14, CD33, CD61) and a nonspecific antigen, HLA-DR. Lymphoid associated markers detected on AML is CD7 32.8%, CD10 14.8%, CD5 13.1%, CD2 6.6% and CD19 1.6%. TdT was positive in 4.9% of AMLs. Hybrid leukemias were 8 cases out 61 AML cases and were mainly composed of monocytic lineage, M4 and M5a. Myeloid markers detected in ALL were CD13 2.2% and CD33 2.2%. In this study, immunologically classified ALLs were composed of 65.2% of CALLA (+) B precursor type, 10.9% of CALLA (-) B precursor pattern, 8.7% of T cell type, 2.2% of B cell type, 4.5% of mixed lymphoid lineage(B&T), 2.2% of undifferentiated leukemia, and 6.5% of hybrid leukemia. Twelve cases of acute leukemias ware finally diagnosed to be 5 cases of hybrid leukemia, 3 cases of B lineage, 3 case of T lineage and 1 case of mixed lymphoid(B&T) leukemia. In summary, we think the best method for typing acute leukemias is by using a combination of FAB classification and immunophenotying.

  • PDF

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

Biodistribution and Hepatic Metabolism of Galactosylated $^{111}In-Antibody-Chelator$ Conjugates: Comparison with $^{111}In-Antibody-Chelator$ Conjugates ($^{111}In$-표지 갈락토즈 접합 항체의 체내분포 및 간에서의 대사 : $^{111}In$-표지 항체와의 비교연구)

  • Kwak, Dong-Suk;Jeong, Kyu-Sik;Ha, Jeoung-Hee;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Paik, Chang-H.;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.402-417
    • /
    • 2003
  • Purpose: To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand the receptor mediated uptake into liver and subsequent metabolism of $^{111}In-labeled$ galactosylated MoAb-chelator conjugates were investigated and compared with those of $^{111}In$ labeled MoAb. Materials and Methods : T101 MoAb, $IgG_2$ against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-${\beta}$-D-galactose and then radiolabeled with $^{111}In$. Biodistribution and metabolism study was peformed with two $^{111}In-conjugates$ in mice and rats. Results: $^{111}In-labeled$ T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiornetabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free $^{111}In$ at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. in contrast to DTPA conjugate, the small $^{111}In-DTPA-like$ metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. Conclusion: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.