• Title/Summary/Keyword: Lens refractive power

Search Result 65, Processing Time 0.027 seconds

Evaluation of Reliability for Combined Refractive Power of Lenses in an Automatic Phoropter (자동포롭터 내부렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2015
  • Purpose: To evaluate the reliability of refractive power by comparing the marked refractive power in an automatic phoropter and actually measured spherical/cylindrical refractive power. Methods: Actual refractive power of minus spherical lens and cylindrical lens in an automatic phoropter was measured by a manual lensmeter and compared with the accuracy of marked refractive power. Furthermore, combined refractive power and spherical equivalent refractive power of two overlapped lenses were compared and evaluated with the refractive power of trial lens. Results: An error of 0.125 D and more against the marked degree was observed in 70.6% of spherical refractive power of spherical lens which is built in phoropter, and the higher error was shown with increasing refractive power. Single cylindrical refractive power of cylindrical lens is almost equivalent to the marked degree. Combined spherical refractive power was equivalent to spherical refractive power of single lens when spherical lens and cylindrical lens were overlapped in a phoropter. Thus, there was no change in spherical refractive power by lens overlapping. However, there was a great difference, which suggest the effect induced by overlapping between cylindrical refractive power and the marked degree when spherical lens and cylindrical lens were overlapped. Spherical equivalent refractive power measured by using a phoropter was lower than that estimated by trial glasses frame and marked degree. The difference was bigger with higher refractive power. Conclusions: When assessment of visual acuity is made by using an automatic phoropter for high myopes or myopic astigmatism, some difference against the marked degree may be produced and they may be overcorrected which suggests that improvement is required.

Measurement of Refractive Power by Reflective image on the Negative Spherical Lens ((-) 구면 렌즈 면의 반사상에 의한 굴절력 측정)

  • Choi, Woon-Sang;Kim, Tae-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.417-421
    • /
    • 2004
  • We can see that two images of reflection are observed on the surface of a ophthalmic lens. These are the image reflected from front surface and back surface of lens, respectively. The reflective image shows to be affect by surface refractive power of front and back surface of lens. Total refractive power of lens is calculated by refractive power of front and back surface of lens. Accordingly, the ratio of image on the lens surface is able to measure refractive power of ophthalmic lens without helping of the lensmeter. The ratio of two reflective image measured on the lens surface is compared with the calculated ratio by the power measurement.

  • PDF

Analysis of Vertex Refractive Power Accuracy of Soft Contact Lens with Holder Type (홀더종류에 따른 소프트 콘택트렌즈의 정점굴절력 측정의 정확도 분석)

  • Lee, Min-Jae;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2015
  • Purpose: The accuracy for measuring the refractive power of hydrogel contact lenses by spectacle lens holder and contact lens holder was evaluated. The accuracy for each sample was also analyzed with water content and diopter categories. Methods: The hydrogel contact lenses used for measurement were classified into three categories in water content (38%, 43%, 58%). Also, three diopter categories of refractive power were used such as -3.000 D, -7.000 D, -10.000 D. And also, the reliability of measurement results were evaluated by measuring refractive power with spectacle lens holder and contact lens holder using an Manual lensmeter. Results: In case of spectacle lens holder method, the average value of refractive power was -3.3273D for -3.0000 D, -7.1306 D for -7.0000 D and -10.2944 D for -10.0000 D, respectively. In case of contact lens holder method, the average value of refractive power was -3.1060 D for -3.0000 D, -7.0028 D for -7.0000 D and -10.2611 D for -10.0000 D, respectively. In measurement of all diopters, the accuracy of contact lens holder method was better than spectacle lens holder method. Conclusions: From these results, it is judged that the refractive power of soft contact lens by manual lensmeter with contact lens holder have a higher accuracy than spectacle lens holder.

The Evaluation of Reliability for the Combined Refractive Power of Overlapping Trial Lenses (중첩된 시험렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.263-276
    • /
    • 2015
  • Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.

Comparative Analysis of Refractive Power on Trial Case Lenses (검안렌즈의 굴절력 비교 분석)

  • Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2012
  • Purpose: In this study, the distribution and differences in refractive powers on trial case lenses were investigated. Methods: We measured refractive powers at optical center and periphery using 4 trial case lens sets. According to international standards, the distribution and uniformity in refractive powers were investigated. Results: The lens shapes were different in different kinds of trial case lenses and some of lenses were out of tolerance according international standards. In some cases, the power differences were found between front and back side as well as between optical center and peripheral regions and also the cylindrical power on spherical lens and spherical power on the cylindrical lens were measured. Conclusions: Trial case lens are used to assess the refractive error, therefore, more precise control of the manufacturing process for trial case lenses and more thorough quality control will be required to offer an accurate vision test. More careful attention in using trial case lens is also required.

The Change of Corneal Refractive Power by Everted Silicone Hydrogel Contact Lens Wear (역방향 실리콘 하이드로겔 렌즈 착용에 따른 각막 굴절력 변화)

  • Kim, Soo-Hyun;Shin, Dong-Min;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.271-277
    • /
    • 2013
  • Purpose: The purpose was to study the corneal refractive power changes associated with the wearing of everted silicone hydrogel soft lenses. Methods: The corneal refractive power and corneal astigmatism were measured using corneal topographer (CT-1000, Shin-nippon Co., Japan) for checking change of corneal refractive power and objective refractive error was measured by auto-refractometer (Natural vision-K 5001, Shin-nippon Co., Japan). We measured at baseline and 1 week after lens wearing. Results: The correcting of corneal refractive power could be effective in low myopia. It's more effective to the higher power of greatest meridian of cornea and the more corneal astigmatism. 73% of subjects' refractive error was decrease less than 1 D and 17% of the subjects had an reverse effect (increase) occurs. The reduction of objective refractive error was more effective when cornea refractive power was great or corneal astigmatism was much. Conclusions: Pressure which the everted silicone hydrogel lens to the cornea could be caused. It occurred as the degrees of corneal power, corneal astigmatism and objective refractive error differences. Selection of an appropriate subject is important considering difficulty of changing the parameters of the lens.

Research of Difference between the Refractive Powers by Autorefractometer and the Prescription using Phoropter (자동 굴절력계의 굴절력값과 포롭터를 이용한 처방값의 차이에 관한 연구)

  • Lee, Ju-Whan;Lee, Koo-Seok;Hong, Hyung-Ki
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • Purpose: This study is research of the conditions which causes difference between the refractive power of the measurement of autorefractometer and the prescription using phoropter. Methods: Autorefractometer (SR-7000) and phoroptor (AV-9000) were used to measure 60 eyes of 30 participants who had no eye diseases and wore the corrective lens due to Ametropia. To prevent the dependence of the prescription value of the refractive power on the testers, two testers measured the refractive power of the eyes of the participants at the same measuring conditions. Results: Statistically, the prescribed values of the refractive power by two testers were not significantly different. Most of the prescribed values of the refractive power were smaller than the refractive power by autorefractometer In case of myopic eyes, the difference between refractive powers by the measurement of autorefractometer and the prescription using phoropter showed the trend of increase as the spherical refractive power became larger. The result was analyzed by the range of the different cylindrical refractive power for the myopic astigmatic eyes. In this case, the difference between refractive powers showed the trend of decrease as the cylindrical refractive power became larger. Conclusions: No difference between the prescribed value by two testers was observed. In case of myopic or myopic astigmatic eyes, the difference between refractive powers by autorefractometer and the prescription were measured to be approximately proportional to the refractive powers of ametropic eyes. As the this difference become larger for the participant who needs the lens of larger refractive power, additional caution is needed in the prescription of the refractive power of the corrective lens.

The Study on Change of Refractive error and Addition in Progressive Eyeglasses Lens Wearers (누진렌즈안경 착용자의 가입도와 굴절이상 변화에 대한 연구)

  • Joo, Seok-Hee;Shim, Moon-Sik;Shim, Jun-Beom
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.399-404
    • /
    • 2013
  • Purpose: This study was to analyse the changes of refractive error and addition in progressive eyeglasses lens wearers. Methods: Data of 244 subjects who have been prescribed progressive eyeglasses lenses were used for analysis. The range of age was between 43~69 old years and they visited the optical shop in Gwangju metropolitan city from 2003 to 2013. According to the refractive state and age, The changes of refractive error and addition was analysed respectively. Results: The changes of distance refractive power by refractive error was showed +0.10 D in emmetropia, +0.07 D in myopia, +0.23 D in hyperopia (p=0.000). The change of addition was showed +0.22 D in emmetropia, +0.29 D in myopia, +0.17 D in hyperopia (p=0.000). The changes of distance power and addition by age was +0.08 D distance refractive power, +0.30 D addition in the group of 40~49 old years, +0.17 D distance refractive power, +0.20 D addition in the group of 50~59 old years and +0.15 D distance refractive power, +0.14 D addition in the group of 60~69 old years (p=0.046, p=0.006). Conclusions: The changes of refractive error and addition of progressive eyeglasses lens wearers in all refractive state and age were gradual increase in the direction (+) diopter.

Study on Manufacturing Aspheric Lens Array with High NA using Reflow Phenomenon (리플로우 현상을 이용한 고 개구수를 갖는 비구면 렌즈 어레이의 제작에 관한 연구)

  • 김완진;이명복;손진승;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.644-647
    • /
    • 2003
  • Resulting from reproducibility and possibility of mass production. many researches to fabricate micro lens array using lithography have been developed. However, it still remains the level of fabricating compensation lens. Therefore, to realize the fabrication of lens having high numerical aperture can be the key technology of ultra slim optical system. Reflow phenomenon have been researched to make lens having high refractive power. And through those researches, the possibility to fabrication of high refractive power lens has been investigated. In this paper, we analyze the effect of many parameters in reflow process to get an aspheric shape with high repeatability. And we make possible to estimate shape error, through we give direct information about decrease in volume of photoresist.

  • PDF

Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens (단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation