• Title/Summary/Keyword: Lens diameter

Search Result 170, Processing Time 0.025 seconds

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

Optical Structural Design using Gaussian Optics for Multiscale Gigapixel Camera (상분할 방식의 기가픽셀 카메라를 위한 가우스 광학적인 구조설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2013
  • It was reported in Nature and the Wall Street Journal on June 20th, 2012 that scientists at Duke university have developed a gigapixel camera, capable of over 1,000 times the resolution of a normal camera. According to the reports, this super-resolution camera was motivated by the need of US military authorities to surveil ground and sky. We notice the ripple effect of this technology has spread into the area of national defense and industry, so that this research has started to realize the super-resolution camera as a frontier research topic. As a result, we can understand the optical structure of a super-resolution camera's lens system to be composed of a front, monocentric objective of a single lens plus 98 rear, multiscale camera lenses. We can also obtain the numerical ranges of specification factors related to the optical structure, such as the diameter of the aperture, and the focal length.

Analysis of the Optical Measurement Error Induced by Vibration of the Optical Measurement Tower for Large Mirrors (대구경 반사경 광학측정용 타워의 진동에 의한 광학측정오차 분석)

  • Kang, Pilseong;Kim, Ohgan;Ahn, Hee Kyung;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.281-289
    • /
    • 2017
  • In the present research, the optical measurement error induced by vibration of the optical measurement tower for large mirrors at KRISS (Korea Research Institute of Standards and Science) is investigated. The vibrations of the tower structure, the interferometer, and the null lens are measured while the surface errors of the 600-mm-diameter on-axis aspheric mirror are measuring, under various environmental conditions. The increase of surface error induced by alignment error with respect to vibration is analyzed. As a result, the interferometer and the null lens, which are located on the top of the tower, are highly sensitive to vibration. Additionally, the surface error of the mirror is strongly increased when the vibration directions of the interferometer and the null lens are different. To reduce the alignment error and the surface error induced by vibration, the tower structure should be improved, to be insensitive to low-frequency vibration. Alternatively, optical measuring under stable conditions by vibration monitoring can improve the reliability of the surface error measurement.

Hemisphere Type Lunegerg Lens Antenna with a Reflector (반사판 부착 반구형 르네베르그렌즈 안테나)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.1006-1014
    • /
    • 2000
  • Hemisphere type Luneberg lens antenna with a reflector(frequency : 9.375 GHz, -3 dB beam width 6$^{\circ}$, diameter 30.3 cm(about 10 A), which is miniaturized and lightweightized by attaching a reflector on a section of half the Luneberg lens antenna, is designed and fabricated on the basis of Luneberg lens antenna from which easy beam pointing is acquired only by movement of 1st radiator. Measurement shows -3dB beamwidth is 6.1$^{\circ}$ in case of E-plane and 5.5$^{\circ}$ in case of H-plane. These are good agreements with expected value. Gain of this antenna is 26dBi(Aperture efficiency for uniform distribution : $\pi$ = 44.97%) which is greater than that of 1st radiator(Rectangular microstrip antenna) by 20.4 dB. And, after calculating the approximated pattern of the 1st radiator, far-field pattern, whose source is the second aperture source farmed from the approximated pattern of the 1st radiator is computed. Comparing this far-field pattern with the expected pattern, a (relatively) good agreement is observed. Circular polarization Luneberg lens antenna is also manufactured by making 1st radiator so that it has the characteristics of LHCP and RHCP radiation. The results are as followings : -3 dB beamwidth 5.8$^{\circ}$ , side lobe level -15.3 dB, isolation between LHCP and RHCP radiation 2543, axial ratio 2 dB bandwidth about 1.4 GHz(14.9%).

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

A Study on the Fabrication Method of Mold for 2 inch LCD-BLU by 50μm Microlens : Effect of Different Aspect Ratio (50μm급 마이크로렌즈 적용 2인치 휴대폰 LCD-BLU 금형 개발 : 광학패턴의 세장비 영향)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.48-53
    • /
    • 2007
  • LCD-BLU(Liquid Crystal Display - Back Light Unit) consists of several optical sheets: LGP(Light Guiding Plate), light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50{\mu}m$ in diameter on the surface. But the surface roughness of LGP with etched dots is very high, so there is much loss of light. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with microlens of $50{\mu}m$ diameter was applied in the present study. The microlens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP and optical simulation was carried out to know tendency of microlens patterned LGP simultaneously. The attention was paid to the effects of different aspect ratio(i.e. $0.2\sim0.5$) of optical pattern conditions to the brightness distribution of BLU with microlens patterned LGP. Finally, high aspect ratio microlens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

Development of Scope with Abbe-König Prism (아베-코닉 프리즘을 이용한 스코프 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.509-517
    • /
    • 2013
  • Purpose: The purpose of this study is developing the 2.6 ${\times}$ optical scope with a Abbe-K$\ddot{o}$nig prism. Methods: First, considering the size of the effective aperture and the focal length of the objective lens, we designed an Abbe-K$\ddot{o}$nig prism. Next, we calculated the optical and geometric distances of Abbe-K$\ddot{o}$nig prism designed in this way. After allocating the focal length of the objective lens and the eyepiece lens so as to satisfy the magnification and optical effective distance of the entire system by using this calculation result, we completed the entire system by optimizing this optical system. Results: We were able to complete the optical scope of about 2.6 ${\times}$ magnification by designing an objective lens with a focal length of 63.13 mm which was composed of two pieces, an eyepiece with a focal length of 24.3 mm which was composed of four pieces, and an Abbe-K$\ddot{o}$nig prism with a face length 11.5 mm. Conclusions: We designed and fabricated an optical scope with 2.6 ${\times}$ magnification employing an Abbe-K$\ddot{o}$nig prism. Then, this system became the compacted optical system with a barrel diameter of 31 mm, characterized by an effective aperture of 12.0 mm and an effective optical barrel length of 103 mm and a resolution of 200 cycles/rad at 50% MTF criterion within the half viewing field angle of $6.42^{\circ}$.

Comparison of preference and Empirical Fit Success Rates for Spheric and Aspheric RGP Lenses (구면 및 비구면 디자인 RGP 콘택트렌즈의 선호도와 경험적 피팅 성공률 비교)

  • Kim, Jai-Min;Kim, Soo-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2008
  • To assess the preference and efficacy of empirical fitting methods with spheric and aspheric RGP lenses. Methods: Healthy 37 subjects were fitted with spheric design (diameter 9.3 mm) on right eye and aspheric design (dia 9.6 mm) on the left eye. Base curves which were fitted empirically (using on-K, Kavg-0.50D (or 1.00D) and manufacturer's recommended fitting guide) were compared with another base curve which obtained the best diagnostic fit with spheric and aspheric RGP lenses. The preference and fitting type (lid attachment or interpalpebral) for two design lenses were investigated 2 weeks after fitting RGP lenses. Results: Of 33 successful RGP lens-wearing subjects, 76% preferred spheric design compared with 24% of aspheric RGP lens wearers. Sixty seven percent were fitted with lid-attachment in spheric lenses, whereas 64% were fitted with lid-attachment in aspheric lenses. The acceptable fit success rates within ${\pm}$0.50D of base curves were 97% for the on-K fit, 100% for the Kavg-0.50D fit and 100% of the manufacturer's guide fit compared with the diagnostic fit in spheric design, whereas 91%, 79% and 94% reported on-K, Kavg-1.00D and manufacturer's guide, respectively, in aspheric design. Conclusions: Although aspheric RGP lenses are more popular in the Korean market, it is still preferable to fit subjects with spheric RGP lenses. Empirical fitting may be best accomplished with the spheric lenses using Kavg-0.50D fit and the manufacturer's fitting guide, whereas aspheric RGP lens designs are unacceptable lens fit based on empirical fitting.

  • PDF

Development of diameter 450 mm Cassegrain tlne collimator (직경 450 mm Cassegrain 형태 시준장치의 제작)

  • 양호순;이재협;이윤우;이인원;김종운;김도형
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.241-247
    • /
    • 2004
  • The collimator is necessary for the assembly and evaluation of high resolution satellite telescope. Traditionally, the off-axis paraboloid has been used as a collimator. However, it has some disadvantages in that it can suffer from air turbulence when the focal length of a collimator is long, which may result in some error in the measurement. In contrast, since the Cassegrain type collimator folds the beam, it occupies smaller space compared to the off-axis paraboloid for the same focal length. This can reduce the air turbulence, which can improve the measurement accuracy. In this paper, we explain the process of design and manufacturing of a diameter 450 mm Cassegrain type collimator, to evaluate the diameter 300 mm satellite telescope. After assembly of primary and secondary mirrors, the final wavefront error of the collimator was 0.07λ(λ=633 nm), which is the diffraction limit.