• Title/Summary/Keyword: Lens Distortion

Search Result 211, Processing Time 0.025 seconds

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Rigorous Analysis of Viewing Zone for 3D Display with Electric-field-driven Liquid Crystal Lens (액정 전계 렌즈 기반 3차원 디스플레이 장치의 엄정한 시청영역 분석)

  • Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.494-498
    • /
    • 2016
  • In this paper, we proposed the 3-dimenstional (3D) analysis for calculating the optical characteristics of an autostereoscopic display with electric field driven liquid crystal (ELC) lens. From 3D analysis considering the slanting of lens, we calculate the cross-talk of each images and the distortion of viewing zone. Using geometric opics and extended Jones matrix method (EJMM), phase retardation of ELC lens according to position is calcuated and then optical path difference in 3D space considering tilt and azimuth angle of incident light is gotten. Then, intensity distribution is presented in the space. Through camparing the intensity distribution using ideal lens with the ELC lens, we identify the noise and image distortion of ELC lens. As a result, this analysis is expected to provide optimum design conditions for realistic and rigorous 3D display with ELC lens.

Distortion Correction of Boundary Lines in a Tunnel Image Captured by Fisheye Lens (어안렌즈 터널영상의 경계선 왜곡 보정)

  • Kim, Gi-Hong;Jeong, Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.55-63
    • /
    • 2011
  • Having a wide angle of view, a fisheye lens is useful for obtaining images of the inside wall of a tunnel. A circular fisheye tunnel image can be transformed into a familiar rectangular image by applying the concept of cylindrical projection. This projection transformation causes several types of distortions in the projected image. This paper discusses the distortion on the boundary lines between smoothly curved wall and flat ground. We analyzed the cause of this boundary distortion, developed transformation model, and derived a correction formular. A distortion correction software programmed in Visual C++ applied to projected image. Consequently, boundary-corrected image could be obtained. Research into other distortions of projected image will helpful in obtaining tunnel image that resembles real tunnel from fisheye tunnel image.

Optimization of optical design for Eye Glass Display

  • Moon, H.C.;Kim, T.H.;Park, K.B.;Park, Y.S.;Seok, J.M.;Kim, H.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1603-1606
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6" Liquid Crystal on Silicon (LCoS) panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to LCOS type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than ${\pm}2%$ of distortion value and modulation transfer function in axial had 20% of resolution with 30 lp/mm spatial frequency. The optical system is suitable for display of 0.6"-diagonal with SVGA.

  • PDF

Location Identification Using an Fisheye Lens and Landmarks Placed on Ceiling in a Cleaning Robot (어안렌즈와 천장의 위치인식 마크를 활용한 청소로봇의 자기 위치 인식 기술)

  • Kang, Tae-Gu;Lee, Jae-Hyun;Jung, Kwang-Oh;Cho, Deok-Yeon;Yim, Choog-Hyuk;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1021-1028
    • /
    • 2009
  • In this paper, a location identification for a cleaning robot using a camera shooting forward a room ceiling which kas three point landmarks is introduced. These three points are made from a laser source which is placed on an auto charger. A fisheye lens covering almost 150 degrees is utilized and the image is transformed to a camera image grabber. The widly shot image has an inevitable distortion even if wide range is coverd. This distortion is flatten using an image warping scheme. Several vision processing techniques such as an intersection extraction erosion, and curve fitting are employed. Next, three point marks are identified and their correspondence is investigated. Through this image processing and image distortion adjustment, a robot location in a wide geometrical coverage is identified.

A New Hand-eye Calibration Technique to Compensate for the Lens Distortion Effect (렌즈왜곡효과를 보상하는 새로운 Hand-eye 보정기법)

  • Chung, Hoi-Bum
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.596-601
    • /
    • 2000
  • In a robot/vision system, the vision sensor, typically a CCD array sensor, is mounted on the robot hand. The problem of determining the relationship between the camera frame and the robot hand frame is refered to as the hand-eye calibration. In the literature, various methods have been suggested to calibrate camera and for sensor registration. Recently, one-step approach which combines camera calibration and sensor registration is suggested by Horaud & Dornaika. In this approach, camera extrinsic parameters are not need to be determined at all configurations of robot. In this paper, by modifying the camera model and including the lens distortion effect in the perspective transformation matrix, a new one-step approach is proposed in the hand-eye calibration.

  • PDF

A New Hand-eye Calibration Technique to Compensate for the Lens Distortion Effect (렌즈왜곡효과를 보상하는 새로운 hand-eye 보정기법)

  • Chung, Hoi-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.172-179
    • /
    • 2002
  • In a robot/vision system, the vision sensor, typically a CCD array sensor, is mounted on the robot hand. The problem of determining the relationship between the camera frame and the robot hand frame is refered to as the hand-eye calibration. In the literature, various methods have been suggested to calibrate camera and for sensor registration. Recently, one-step approach which combines camera calibration and sensor registration is suggested by Horaud & Dornaika. In this approach, camera extrinsic parameters are not need to be determined at all configurations of robot. In this paper, by modifying the camera model and including the lens distortion effect in the perspective transformation matrix, a new one-step approach is proposed in the hand-eye calibration.

Sky Condition Analysis using the Processing of Digital Images (디지털 이미지 처리를 통한 천공상태 분석)

  • Park, Seong-Ye;Sim, Yeon-Ji;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • The accurate analysis of the outside sky conditions is necessary to increase the efficiency of blind PV system. To conduct the accurate analysis, this paper suggested a method to analyze the sky condition using a specific image processing technique. While a fisheye lens has a wide field-of-views, it causes a large distortion to the sky images. Therefore, this paper calculated the exchange ratio of sky images to consider a lens distortion. As results of the study, there was a difference of 7% to cloud area ratio F4 and F11. Also, it had a different result depending on the position of the cloud.

Camera Modeling for Kinematic Calibration of a Robot Manipulator (로봇 매니퓰레이터의 자세 보정을 위한 카메라 모델링)

  • 왕한흥;장영희;김종수;이종붕;한성연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.179-183
    • /
    • 2002
  • This paper presents a new approach to the calibration of a SCARA robot orientation with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. radial distortion causes an inward or outward displacement of a given Image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

Development of Camera Calibration Technique Using Neural-Network (뉴럴네트워크를 이용한 카메라 보정기법 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.225-229
    • /
    • 1997
  • This paper describes the camera calibration based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes and inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera calibration is illustrated by simulation and experiment.

  • PDF