• Title/Summary/Keyword: Length ratio of pile

Search Result 76, Processing Time 0.021 seconds

A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension (수직증축형 공동주택 리모델링 구조해석을 위한 PC말뚝 강성에 관한 연구)

  • Choi, Changho;Lee, Hyunjee;Choi, Kisun;You, Youngchan;Kim, Jinyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.81-92
    • /
    • 2017
  • According to the revision of the Housing Act in 2013, it has been possible to carry out an apartment remodeling project involving two to three floor vertical extension. The remodeling project with vertical extension requires foundation reinforcement because structural safety due to additional load and enhanced seismic criteria must be met. In this case, structural analysis is performed to analyze the load distributed to existing PC pile and reinforced additional pile. The vertical stiffness ($K_v$) of the pile is required for structural analysis, but the research on the 20~30 year old PC pile stiffness is very limited. In this paper, the stiffness of the PC pile in accordance with the change of diameter and length was analyzed by examining the results of 38 field pile load tests performed during the construction of the apartments in the 1990's. As a result of the analysis, the pile stiffness decreases with the increase of the length-diameter ratio (L/D). In addition, the results of on-site pile load test are compared with the coefficient 'a' for estimating pile stiffness proposed in Korea Highway Bridge Design Standard (2008) and the Pile Foundation Design Guideline of Korea Railroad Corporation (2012). It shows that 'a' obtained through the estimation of the literature is very similar to the field test results in the range of 10

A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions (지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구)

  • You, Kwang-Ho;Jung, Yeun-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.35-46
    • /
    • 2016
  • In this study, a sensitivity analysis was carried out by using numerical analysis under the consideration that it is difficult to analyze the behavior of real piled raft foundations on different ground conditions through a real scale test. The program used for numerical analysis is FLAC 3D based on the finite difference method. Piles were modelled by using pile element that is one of the structure elements of FLAC 3D and the ground and raft were modelled by using continuum element. With a fixed pile arrangement of $3{\times}3$, the diameter, length, space of piles, and ground conditions were selected as sensitivity parameters and their mutual correlation were investigated. As a result, the bigger and longer pile diameter, length and pile space are, the bigger the bearing capacity of the piled raft becomes. When pile space exceeded a specific value, however, the piled raft foundation behaved like a shallow foundation supported by only a raft. Also it can be confirmed that the better ground conditions are, the more total bearing capacity of the piled raft foundation increases.

Lateral Behavior of Single Rigid Driven Pile in Non-Homogeneous Sand (비균질 지반에서 항타 관입한 단일 강성말뚝의 수평거동 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.167-185
    • /
    • 1999
  • A series of model tests was performed to find the characteristics of lateral behavior of single rigid pile. This paper shows the results of model tests on the lateral behavior of single rigid driven pile in non-homogeneous(two layered) Nak-Dong River sands. The purpose of this paper is to investigate the effect of the ratio of lower layer thickness to embedded pile length, the coefficient ratio of the subgrade reaction and the pile construction conditions(driven & embedded piles) on the characteristics of lateral behavior of single pile. The results of model tests show that the lateral behavior in non-homogeneous soil depends upon drop energy considerably, that is, in the case of H/L=0.75, as the drop energy increases three times the decrease percentage increases about 2.12 times. In the driven pile with non-homogeneous soil of $E_{h1}/E_{h2}=5.56$, the effect of upper layer with large stiffness on the decrease of lateral deflection is remarkably smaller than embedded pile. In non-homogeneous soil, the maximum bending moment of driven pile is in the range of 100 132% in comparison with embedded pile. The reason is that the stiffness of soil around pile increases with drop vibration and so the pile behavior is similar to the flexible pile behavior by means of the increase of relative stiffness of pile, In this paper, the experimental equations for lateral load and H/L on $y_D/y_E \; & \; MBM_D/MBM_E$ are suggested from model tests.

  • PDF

Installation of Micro-piles Appropriate to Soil Conditions (지반조건에 따른 마이크로파일 설치방법에 관한 연구)

  • Hwang, Tae-Hyun;Mun, Kyeong-Ryeon;Shin, Yong-Suk;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • This study performs model test to propose the installation method of micro-pile appropriate to various soil conditions such as sand or silt soil. As a result, the crossed installation method (${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a compression displacement of soil in the case of silt exhibiting the punching shear failure. And the inclined installation method (${\theta}$ > $0^{\circ}$ or ${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a lateral displacement of soil in the case of sand to exhibiting the general or local shear failure.

Lateral Bearing Characteristics of Large Diameter Drilled Shafts by Casing Reinforcement Condition Using Non Linear Analysis (비선형해석을 이용한 케이싱 보강조건에 따른 대구경 현장타설말뚝의 수평거동특성)

  • Yoo, Jin-Ho;Moon, In-Jong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.23-33
    • /
    • 2020
  • The lateral bearing characteristics are important factors in the case of large diameter drilled shafts and the measures to increase this are to improve the adjacent ground of the pile to increase the rigidity and to increase the rigidity of the pile itself. There are many suggestions for increasing rigidity by reinforcing casing on the pile, but few studies have been done related to this. Therefore, in this study, the lateral bearing characteristics according to casing reinforcement length were studied for each ground condition using non-linear analysis to evaluate the appropriate casing reinforcement length of the large diameter drilled shafts depending on the ground conditions. As a result, the lateral bearing characteristics of the large diameter drilled shafts are most effective if the casing reinforcement length ratio is 1.2, and depending on the ground conditions, the more loose the ground, the greater the reinforcement effect.

Shear Characteristics of a SCP Ground with Different Length of Sand Pile and Replacement Ratio (모래말뚝 설치심도 및 치환율이 다른 SCP지반의 전단특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Lee, Young-Yoel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.9-18
    • /
    • 2011
  • This paper presents shear characteristics of a ground improved by sand piles. The sand piles have different length and diameter depending on the depth of a clayey layer. A series of CU triaxial compression tests are carried out on specimens covered with/without soft material which is similar to geotextile. The results show that the shear strength and stress ration increase as the length and the diameter of the sand pile increase. In addition, covering the specimen with the soft material appears to affect those characteristics as well. The increase of cohesion seems to be more remarkable compared to internal frictional angle.

Effect of Pile Construction on Lateral Behavior of Single Rigid Pile in Sand (사질토 지반에서 단일 강성말뚝의 수평거동에 대한 시공방법의 영향)

  • 김병탁;김영수;서인식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.29-44
    • /
    • 1999
  • This paper shows the results of model tests on the lateral behavior of single rigid pile, which was constructed by driving, in homogeneous and non-homogeneous (two layered) NakDong River sands. The purpose of the present paper is to investigate the effect of ratio of lower layer thickness to embedded pile length, relative density of sand and pile construction conditions (Driven & Embedded piles) on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. As a model result, the lateral behavior depends upon the pile construction condition in loose-density soil more than in high-density soil. If the pile construction depends upon driving construction, the decrease of deflection remarkably increases for both loose homogeneous sand and non-homogeneous soil$(E_{h1}/E_{h2}/=0.18)$ with high thickness of upper layer but the decrease of maximum bending moment shows the opposite result to the decrease of deflection. And, with respect to deflection, it was found that the deflection ratio $(y_{Driven}y_{Embedded})$ of embedded to driven piles has the ranges of 0.65 - 0.88 $(D_r=90%)$0.38 - 0.65 $(D_r=61.8%)$ for each relative density of homogeneous soil and the range of 0.6 - 0.88 for non-homogeneous soil. Also, in this study, the experimental equation for the effects of drop height (DH) and H/L on the ratios of $y_D/y_E\; and MBM_D/MBM_ E$ is suggested from model tests.

  • PDF

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

Numerical study on the optimal position of a pile for stabilization purpose of a slope

  • Boulfoul, Khalifa;Hammoud, Farid;Abbeche, Khelifa
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.401-411
    • /
    • 2020
  • The paper describes the influence of pile reinforcement on the stability of the slope behaviour, and the exploitation of the results of in situ measurements will be conducted. In the second part, a 2D numerical modelling will be conducted by using the finite element code PLAXIS2D; in order to validate the proposed modelling approach by comparing the numerical results with the measurements results carried out on the slides studied; to study the effect of positioning of piles as a function of the shear parameters of the supported soil on the behaviour of the soil. For various shear strength of the soil a row of pile position is found, at which the piles offer the maximum contribution to slope stability. The position of piles is found to influence the safety factor in granular soil whereas it shows a slight influence on the safety factor in coherent soil. The results also indicate that the ideal position for such stabilizing piles is in the middle height of the slope. Comparison of results of present study with literature from publication: indicated that to reach the maximum stability of slope, the pile must be installed with Lx/L ratio (0.37 to 0.62) and the inclination must be between 30° to 60°. Even, after a certain length of the pile, the increasing will be useless. The application of the present approach to such a problem is located at the section of PK 210+480 to 210+800 of the Algerian East-West Highway.

Numerical Investigation on Combined Load Carrying Capacity and Consolidation Behavior of Suction Piles (석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Hong, Seung-Rok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2014
  • This paper presents the results of a numerical investigation on the load carrying capacity and consolidation behavior of suction piles. Three dimensional numerical models which reflect realistic ground conditions and installation procedures including the ground-suction pile interface were adopted to conduct a parametric study on variables such as the length-diameter ratio and the loading configurations, i.e, vertical, horizontal, and combined loads. The results indicated that the load carrying capacity of a suction pile can only be realistically obtained when the interface behavior between the suction pile and the ground is correctly modeled. Also carried out was the stress-pore pressure coupled analysis to investigate the consolidation behavior of the suction pile after the application of a vertical loading. Based on the results, failure envelops and associated equations were developed, which can be used to estimate load carrying capacity of suction piles installed in similar conditions considered in this study. The results of consolidation analysis based on the stress-pore pressure coupled analysis indicate that no significant excess pore pressure and associated consolidation settlement occur for the loading configuration considered in part due to the load transfer mechanism of the suction pile.