Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.51-55
/
2001
With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-Line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task. Information retrieval(IR) is the task of searching a set of documents for some query-relevant documents. On the other hand, text summarization is considered to be the task of searching a document, a set of sentences, for some topic-relevant sentences. In this paper, we show that document information, that is more reliable and suitable for query, using document length normalization of which is gained through information retrieval . Experimental results of this system in newspaper articles show that document length normalization method superior to other methods use query itself.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.10
/
pp.120-129
/
1996
This paper presents an efficient block segmentation and classification using the edge information of the document image. We extract four prominent features form the edge gradient and orientaton, all of which, and thereby the block clssifications, are insensitive to the background noise and the brightness variation of of the image. Using these four features, we can efficiently classify a document image into the seven categrories of blocks of small-size letters, large-size letters, tables, equations, flow-charts, graphs, and photographs, the first five of which are text blocks which are character-recognizable, and the last two are non-character blocks. By introducing the clumn interval and text line intervals of the document in the determination of th erun length of CRLA (constrained run length algorithm), we can obtain an efficient block segmentation with reduced memory size. The simulation results show that the proposed algorithm can rigidly segment and classify the blocks of the documents into the above mentioned seven categories and classification performance is high enough for all the categories except for the graphs with too much variations.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.4
/
pp.293-298
/
2016
Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.
Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2178-2198
/
2024
Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.
According to the fast growth of information on the Internet, it is becoming increasingly difficult to find and organize useful information. To reduce information overload, it needs to exploit automatic text classification for handling enormous documents. Support Vector Machine (SVM) is a model that is calculated as a weighted sum of kernel function outputs. This paper describes a document classifier for web documents in the fields of Information Technology and uses SVM to learn a model, which is constructed from the training sets and its representative terms. The basic idea is to exploit the representative terms meaning distribution in coherent thematic texts of each category by simple statistics methods. Vector-space model is applied to represent documents in the categories by using feature selection scheme based on TFiDF. We apply a category factor which represents effects in category of any term to the feature selection. Experiments show the results of categorization and the correlation of vector length.
The purpose of document summarization is to provide easy and quick understanding of documents by extracting summarized information from the documents produced by various application programs. In this paper, we propose a document summarization method that creates and analyzes a connection graph representing the similarity of keyword lists of sentences in a document taking into account the mean length(the number of keywords) of sentences of the document. We implemented a system that automatically generate a summary from a document using the proposed method. To evaluate the performance of the method, we used a set of 20 documents associated with their correct summaries and measured the precision, the recall and the F-measure. The experiment results show that the proposed method is more efficient compared with the existing methods.
In this paper, we propose an efficient document layout analysis algorithm that includes table detection. Typical methods of document layout analysis use the height and gap between words or columns. To correspond to the various styles and sizes of documents, we propose an algorithm that uses the mean value of the distance transform representing thickness and compare with components in the local area. With this algorithm, we combine a table detection algorithm using the same feature as that of the text classifier. Table candidates, separators, and big components are isolated from the image using Connected Component Analysis (CCA) and distance transform. The key idea of text classification is that the characteristics of the text parallel components that have a similar thickness and height. In order to estimate local similarity, we detect a text region using an adaptive searching window size. An improved adaptive run-length smoothing algorithm (ARLSA) was proposed to create the proper boundary of a text zone and non-text zone. Results from experiments on the ICDAR2009 page segmentation competition test set and our dataset demonstrate the superiority of our dataset through f-measure comparison with other algorithms.
According to ascending needs for quality assurance of plate by customer and automated measurement of dimension for slab, in plate mill, project is on preceeding to install measuring system to measure width, length and camber of slab and plate using laser distance meter. In this document, I will describe not technical point of view but idea of design for installation system.
PRATAMA, Bima Yoga;NARSA, Niluh Putu Dian Rosalina Handayani;PRANANJAYA, Kadek Pranetha
The Journal of Asian Finance, Economics and Business
/
v.9
no.2
/
pp.103-112
/
2022
This study aims to obtain empirical evidence regarding the link between tax avoidance (TA) and the readability of financial statements. This is a quantitative research using Ordinary Least Squares regression analysis which is then processed using STATA 14.0. A total of 278 companies listed on the Indonesia Stock Exchange during the period 2017-2019 is the data of this study. In detecting TA in a company, this study uses the ETR and CashETR and for the measurement of financial statement readability, this study uses gunning fog index and length of the document. The findings of this study suggest that tax avoidance and clear financial statements are mutually exclusive in the sense that when tax avoidance is practiced, companies will tend to conceal the information conveyed by financial statements. In other words, it is concluded that the more a company engages in tax avoidance, the lower the readability of the company's financial statements. This study provides in-depth evidence that tax avoidance is indirectly related to the disclosure of information by the company. Users of financial statements will realize that the company seeks to make disclosures that are in their best interests to avoid their tax avoidance strategy being detected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.