• Title/Summary/Keyword: Length Dimension

Search Result 665, Processing Time 0.026 seconds

A STUDY ON THE MANDIBULAR MOMENTS ACCORDING TO ANTERO-POSTERIOR PLACEMENT OF PIVOT ON LOWER NATURAL DENTITION (자연치열에 설치한 pivot의 전후방 일치변화에 따른 하악의 moment에 관한 연구)

  • Lee Hyun-Shick;Park Nam-Soo;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.394-410
    • /
    • 1993
  • This study was accomplished for appreciation of the mandibular moments according to antero- posterior movement of pivot placed on the lower natural dentition. For this study, 20 subjects(male, $21\sim30$ yrs., average age 24) in the category of normal occlusion were selected, and the intraoral Vitallium clutches were cast and fabricated for each subjects. A 2-dimension PSD(Position Sensitive Detector, Hamamatsu Photonics Co., Japan) was attached to maxillary clutch in a mode of three dimensional control and LED (Light Emit Diode, Hamamatsu Photonics Co., Japan) was set up on mandibular clutch. Both clutches were set into oral cavity of each subjects and adjusted. Then the subjects were allowed to intercuspated with maximal bite force while the pivoting ball in the mid-line moving from anterior toward posterior position. The displacement scales were recorded by CCD camera(Sony, CCD-TR-705) and VCR, The conclusions were as follows : 1. When the subject was allowed to bite the metal pivoting ball in the midline of lower dentition with maximal bite force voluntarily while moving from lower central incisor to canine, 1st premolar, End premolar, 1st molar and 2nd molar. The lever actions on the pivot were revealed in all subjects. The equilibrium of moment were revealed on the pivots of 1st premolar(14 subjects), End premolar(4 subjects), and canine(2 subjects) areas. 2. The changes of loading on the TMJ according to antero-posterior positional changes of metal pivoting ball were able to recognize as follow. Compression on the TMJ was increased when the pivot moves anteriorly from the equilibrium point, and tension on the TMJ was increased when posteriorly. 3. 13 subjects were recognized their habitual chewing sides(Rights, Left8), and 7 subjects were not. During maximal biting, mandible was displaced toward their habitual chewing sides on the metal pivoting ball in the frontal plane. 4. In cephalometric analysis, the average genial angle of 20 subjects was $116.75^{\circ}$ and the average mandibular body length was 79.77mm. The equilibrium points of mandibular moment were positioned more posteriorly in the subjects having larger Genial angle than in the smaller(p<0.05). Relationships among the angle between FH plane and occlusal plane, the angle between occlusal plane and mandibular plane , and mandibular body length were not significant(p>0.05).

  • PDF

Composting Effectiveness of A Sundry System with A Bin-type Composter for Recyle of Animal Wastes (축분뇨처리를 위한 Bin형 부숙조- Sundry 시스템의 퇴비화효율 평가)

  • 최홍림;김현태;정영윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.92-103
    • /
    • 1993
  • A sunday system with a horizontal bin-type composter was constructed and operated to evaluate its composting performance for four days for each test in October, 1992. A sundry system is one of popular systems for composting livestock manure, of which main benefit is to utilize unlimited, clean, and free solar radiation. A rectangular concrete bin(composter) with dimension of 300cm(length) X90cm(width) X60cm(height) was bedded alternatively with four lanes of aeration pipes and heating pipes, and was insulated at three walls with 50mm styrofoam. Each aeration pipe of a diameter of 25mm had 4mm perforated holes at every 15cm longitudinally, and supplied air of about 2m$^3$/min to the composter to maintain aerobic condition . A stirrer rotating at 1 rpm made one round trip every 20 minutes on the conveying chain along the the length of the composter. Five tests (Test 1~Test 5) were implemented to evaluate the composting effectiveness of a sundry system with a horizontal bin-type composter. Treatments of two levels of the mixture ratio of swine manure and paper sludge cakes(manure : paper sludge cakes= 1 : 4 and 1 : 2) and two levels of the water content(W/C ; 70% and 50%) were made to test the significance of the physicochemical properties for decomposition of the mixture materials. Temperature, C/N ratio, water content, microbial activity of the composting materials were taken measurements to evaluate its performance with the lapse of composting time for tests. A small-scale sundry system with a bin-type composter did not appear to be an appropriate system for composting livestock manure. Since heat generation by the composting materials could not overcome heat loss due to areation in a small-scale composter, a proper thermal enviroment could not be maintained to propagate massively thermopilic microorganism relatively in a short period of time. Different from the result of Chol et al.(1992) 6), a temperature variation of the composting materials did not show the peak clearly and C/N ratio didn't lower with time as expected. Mesophilic microoragnism seemed to play an important role for decomposition of the mixture materials. A sundry system with a bin-type composter may be good for a large-scale livestock farm household which may produce enough animal manure. Therefore a decision should be made very carefully to choose a system for composting livestock waste.

  • PDF

A Study on the Lower Body Torso Shape in 40s, 50s and 60s Women for Development of Urinary Incontinence Panty

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.163-173
    • /
    • 2022
  • This study attempted to categorize the lower body torso type and investigated its characteristics for women in their 40s, 50s, and 60s, who increase the frequency of incontinence. This study analyzed the 8th human dimension survey data of Korean Agency for Technology and Standards. The data were analyzed by SPSS 26.0 program. It was analyzed that the height item of the lower body torso decreased, the width item widen as the age increases, and the waist and abdomen circumference of the circumference item increased and the hip circumference decreased. Body length decreased with age. The components of the lower torso were classified into the lower torso horizontal factor, height factor, lower factor, and vertical factor. The lower body torso type was classified into a long inverted triangular body type, a short and high body type, a body fat body type, and a low triangular body type. It was analyzed that type 3 was the largest in the horizontal factor and height factor, and type 1 was the largest in the vertical factor and the lower part factor. A new drafting method was required in setting the horizontal part of the incontinence panty, the front and the back length.

A study on long-term soft tissue changes after superior repositioning of the maxilla (상악골의 수술적 상방이동에 대한 연조직의 장기적 변화에 관한 연구)

  • Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.627-635
    • /
    • 1999
  • Soft tissue changes that occurred between presurgery to 5-years post-surgery in 49 orthognathic surgery patients whose maxillae were moved upward by Le Fort I osteotomy were examined by lateral cephalometric film. The objective of this paper was to document soft tissue changes at long-term follow-up after superior repositioning of the maxilla and to relate soft tissue and hard tissue changes in this group. The results were as follows. 1. On average, soft tissue landmarks in the nose and the upper lip were not changed statistically significantly except superior movement of superior labial sulcus and forward movement of pronasale between presurgery and 5 years postsurgery. 2. Upward and forward movement of the lower lip were found at 5 years postsurgery in comparison with presurgery and genioplasty added this effects. 3. Upper lip length and vertical dimension of upper vermilion didn't show any significant changes, but increase of lower lip length and decrease of vertical dimension of lower vermilion were statistically significant between presurgery and 5 years post-surgery. 4. The decrease of upper incisor exposure and interlabial distance from presurgery to 1 year were continued from 1 year to 5 years and the amount of the decrease was more than that of vertical movement of the maxilla by surgery. 5. Long term changes in soft tissue landmarks from 1 to 5 years postsurgery exceeded hard tissue changes, meaning soft tissue moved down more than skeletal changes.

  • PDF

CRANIOFACIAL STRUCTURE AND ARCH DIMENSION OF ADULT CLASS III MALOCCLUSION (성인 III급 부정교합자의 악안면골격구조 및 치열궁형태에 관한 연구)

  • Lee, Dong-Geun;Suhr, Cheong
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.359-372
    • /
    • 1997
  • This study was conducted to discern differences of craniofacial, dentoalveolar structure and model measurements between sex and between class n openbite group and non-openbite group. The sample consisted of 49 adult patients with class Il malocclusion. 24 linear measurements, 22 angular measurements and 12 ratios were selected in lateral cephalometry. Also, arch width, length, anterior crowding, average molar relation were measured or calculated in diagnostic model. The data were evaluated by t-test and multiple discriminant analysis. The results were as follows, 1. Most linear measurements, with the exception of MnBL and AUDH, were significantly larger in male(p<0.05). but, intermaxillary relations and spatial position of maxilla and mandible relative to cranial base were not different for both sex. 2. With the exception of upper and lower anterior crowding, lower arch width, upper arch length, AMR, male exhibited significantly larger measurements in model analysis (p<0.05). 3. Size differences of maxilla and mandible between openbite and non-openbite group were not significant(p>0.05). but openbite group showed significantly increased genial angle(p<0.05), FH-CoGo(p<0.01), FH-NA(p<0.01) and FH-NB, FH-NPog (p<0.05). 4. ALFH and PUDH were larger(p<0.05) in openbite group. this result served as compensation for the spatial position of mandible relative to cranial base. AUPUDH (p<0.001) and ALPLDH(p<0.05) were lower in openbite group. upper anterior crowding was the only measurement which showed difference between openbite and non-openbite group(p<0.05). 5. For the purpose of classifying adult class n openbite and non-openbite group, multiple discriminant analysis was done genial angle, ALPLDH, AUPUDH, FH-NA were included in multiple discriminant equation. 39 cases($92.86\%$) were correctly classified when applied to the sample used in this study.

  • PDF

Properties of Components for the Dapogye of Hipped and Gable Roof Wooden Buildings (합각지붕 사찰 주불전의 규모에 따른 기둥 및 처마부 관계분석 연구)

  • Go, Jung-Ju;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3192-3202
    • /
    • 2014
  • This study has its purposes on analyzing specific features of the elements according to scales of 32 main buddhist sancta among wooden temples with gable roof that are nationally designated as cultural assets, and analyzing influences and proportional relations between main and submaterials, so that it could be basic and objective data for restore and repair cultural assets in the future. Results of the study are following. First of all, the average plane proportion of doritong (facade) and yangtong (side) in 3-room building is about 1.31:1, while it is 1.70:1 in 5-room building. Secondly, as a result of analyzing the locational proportion and thickness of pillars at each location, floor room turned out to have wider space between pillars than that of edge room or side room in both cases of 3 and 5-room buildings. In the mean time, for the average thickness of the pillars in 3-room building, it was 491mm for corner pillars, 433mm for general pillars in cases of 3-room building, while it was 595 and 511mm respectively in cases of 5-room building. The reason why corner pillars are 60~80mm thicker than general ones in average, is determined to considered structural stability and optical illusion. For the third, as a result of analyzing the influences on pillar thickness, eaves projection and eaves height according to the scale(dimension) of buildings, 3-room buildings have outstanding correlation as its scale(dimension) goes bigger, while 5-room ones are not very much influenced by its scale(dimension). For the fourth, as a result of the relation between pillars and eaves, both of 3 and 5-room buildings have longer-projected and higher eaves as their pillars go taller; especially height of eaves turns out to have very close relation between length of pillars. In addition to that, both of 3 and 5-room buildings have much projected eaves as the eaves go higher.

A comparative study on head posture and craniofacial morphology between koreans and scandinavian caucasians (한국인과 스칸디나비아계 백인의 두부자세와 두개안면구조의 형태에 관한 비교연구)

  • Oh, Yong-Duck;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.707-720
    • /
    • 1999
  • The purpose of this study was to evaluate racial differences In head posture and the influence of head posture to the craniofacial morphology. The sample group of this study was made up of 51 Korean males and 120 Scandinavian Caucasian males. From the comparison of the cranio-cervical angle and the variables of craniofacial morphology between them, the following results were obtained. 1. The cranio-cervical angle (NSL/OPT) was on average 9.28 degrees larger In Koreans. 2. The length of the anterior cranial base (N-S) was on average 4.66mm shorter in Koreans. 3. The length of the maxillary base (sp-pm and ss-pm) were on average 2.75mm and 4.65mm shorter in Koreans respectively, the anterior maxillary height (n-sp) was on average 2.60mm longer, the posterior dimension (s-pm) was found to be 2.06mm longer in Koreans, and the maxillary inclination (NSL/NL) was identical in both samples. 4. The mandibular body length (pg-tgo) and ramus height (ar-tgo) were identical in the two groups, but the genial angle (ML/RL) was 3.22 degrees smaller and the mandibular plane inclination (NSL/ML) was 2.44 degrees larger in Koreans 5. The maxillary prognathism (s-n-sp and s-n-ss) and the mandibular prognathism (s-n-sm) were identical in both samples. 6. The sagittal jaw relationship (ss-n-pg) was 1.44 degrees larger in the Korean sample, but the vortical jaw relationship (NL/ML) was not significantly different. 7. The anterior facial height (n-gn) was 5.57mm longer in the Korean sample. 8. The mandibular alveolar prognathism (CL/ML) was 5.71 degrees greater and the interincisal angle (ILs/ILi) was 3.08 degrees more acute in Koreans. Taken together these results, craniofacial morphology can be influenced by the head posture defined by cranio-cervical angulation.

  • PDF

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Development of Handling Guidelines for the Safety and Health of Transporters of Hazardous Chemicals - Focusing on Safety Containers and Packaging for Delivery of Hazardous Chemicals Used for Reagents - (유해화학물질 운반자의 취급안전보건 관리를 고려한 취급기준 마련 - 유해화학물질 시약 등 택배 안전용기 및 포장기준을 중심으로 -)

  • Im, JiYoung;Jeong, JaeHyeong;Sung, HwaKyung;Kwon, YongMin;Ryu, JiSung;Lee, JinHong;Lee, JiHo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • Objectives: In this study, we analyzed the current state of delivery containers and packages and established handling guidelines to safely transport delivery containers and packages for use in research, testing, and examination reagents. Methods: Handling guidelines were revised in such categories as maintenance of the handling facilities, storage, loading and unloading, containers and packages, transportation, etc. In addition, we analyzed the current state of domestic sales for hazardous chemicals used for research, testing, and examination reagents, and investigated the handling guidelines related to delivery transportation in the USA, EU, and Japan by chemical property. Results: There are 6,160 companies selling hazardous chemicals. Among them, the 476 companies selling reagents for use in research, testing, and examination were investigated. Total amounts handled reached 425,000 tons, contributing to 0.2% of the total. For delivery transportation, internal containers and packaging was specified for chemical properties as follows: within 1 L for flammable gas, within 5 L for flammable liquid, and within 18 L for others. In addition, the maximum size of the outer package was set within 130 cm for total length, width, and height, and no dimension of the packaging could exceed 60 cm. Sixty-four hazardous chemicals with explosiveness or acute inhalation toxicity were prohibited for delivery transportation. Conclusion: Specified handling guidelines for inner and outer containers as well as packaging were regulated for delivery transportation of hazardous chemicals used for reagents. In addition, 64 hazardous chemicals were prohibited for delivery transportation. These are designed to prevent transportation accidents involving hazardous chemicals for reagents and thus protect the safety and health of transporters who handle hazardous chemicals.