• Title/Summary/Keyword: Length Dimension

Search Result 664, Processing Time 0.041 seconds

Highly Tunable Block Copolymer Self-assembly for Nanopatterning

  • Jeong, Yeon-Sik;Jeong, Jae-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.1-6.1
    • /
    • 2011
  • Nanoscale block copolymer (BCP) patterns have been pursued for applications in sub-30 nm nanolithography. BCP self-assembly processing is scalable and low cost, and is well-suited for integration with existing semiconductor fabrication techniques. However, one of the major technical challenges for BCP self-assembly is limited tunability in pattern geometry, dimension, and functionality. We suggest methods for extending the degree of tunability by choosing highly incompatible polymer blocks and utilizing solvent vapor treatment techniques. Siloxane BCPs have been developed as self-assembling resists due to many advantages such as high etch-selectivity, good etch-resistance, long-range ordering, and reduced line-edge roughness. The large incompatibility leads to extensive degree of pattern tunability since the effective volume fraction can be easily manipulated by solvent-based treatment techniques. Thus, control of the microdomain size, periodicity, and morphology is possible by changing the vapor pressure and the mixing ratio of selective solvents. This allows a range of different pattern geometry such as dots, lines and holes and critical dimension simply by changing the processing conditions of a given block copolymer without changing a polymer chain length. We demonstrate highly extensive tunability (critical dimension ~6~30 nm) of self-assembled patterns prepared by a siloxane BCP with extreme incompatibility.

  • PDF

Design and Analysis of PIFA with Frequency Operation (이중 주파수에서 동작하는 PIFA의 설계 분석)

  • Park, Jung-Ho;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.107-116
    • /
    • 2001
  • In this thesis, characteristics of compact PIFA are analyzed for operation in dual frequencies (dual-PIFA) as variety of parameters. The antenna is composed of two patches. These are operated in high frequency and low frequency. The dimension of experiential antenna is fixed for attaching at the handset. The variable parameters are dimension of small patch, length of shorting strip and dimension of folded conductor plate, the frequencies are 900 MHz and 1800 MHz. The compact antenna is implemented with 2-layer type, electric field intensities and radiation patterns are simulated. In order to analyze characteristics of a performance as variety of parameters, FDTD method is used.

  • PDF

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Sizing System Development of Korean Structural Firefighting Protective Clothing (한국 소방용 방화복의 치수체계 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Choi, Young-Lim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.827-839
    • /
    • 2009
  • Sizing system of Korean structural firefighting protective clothing that is national approved should be met for specification of structural firefighting protective clothing that is identified by Ministry of Public Administration and Security(MOPAS). However if you look over the specification of sizing system, the standard is based on only 'height' and the others are indicated as the size of completed product. KS K ISO 13688 and EN 340 which is met on ISO 13688 which indicates sizing system about protective clothing has the standards of height, chest and waist circumference. Also NFPA 1971 that has standards of sizing system is based on chest circumference, cervical to wrist length, waist circumference and inseam. That is different from Korean standards. Therefore, fire fighting protective clothing standards which is based on only height should be compensated and not be relied on foreign standards like ISO. It is indispensable for developing our own sizing system of structural fire fighting protective clothing. In this studying, Korean new sizing system of structural fire fighting protective clothing was developed for providing basic information of ergonomic structural fire fighting protective clothing. The analyzed target age was between 20 and 59 years old fire fighter who extinguish the fire. And it was analyzed by 3D measurement among data of the $5^{th}$ Size Korea. On conclusion, in case of structural fire fighting protective clothing coat, physical dimension was to be chest circumference, cervical to wrist length. Three dimensions as 5cm space of circumference and four dimensions as 2.5cm space of cervical to wrist length were derived, which means that totally 12 dimensions were defined. Dimension standards of pants was based on the analysis of waist circumference and crotch height. Six dimensions as 5cm space of waist circumference and three dimensions as 5cm space of crotch height were derived, which means that totally 14 dimensions were defined.

The Dimension of Trichomonas vaginalis as Measured by Scanning Electron Microscopy

  • Cheon, Sang-Hoon;Kim, Seung Ryong;Song, Hyun-Ouk;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.243-246
    • /
    • 2013
  • It is known that physicochemical conditions (e.g., pH, temperature, and ionic strength) affect the size of trichomonads. In this study, the sizes of 4 isolates of Trichomonas vaginalis cultured for more than a year (called "old T") and 3 isolates freshly isolated from vaginitis cases (called "fresh T") were compared by scanning electron microscopy. Although the fresh T had shorter body length, body width, and flagellar length than old T, total length (about $26{\mu}m$), including body length, flagella length, and axostyle length was almost the same in the 2 groups. A striking difference was observed between the axostyles of the 2 groups; the axostyle length of the fresh T ($8.2{\mu}m$) was more than twice as long as that of the old T ($4.0{\mu}m$). However, in several parasitology textbooks, the length of T. vaginalis is said to vary widely from 7 to $32{\mu}m$, and its undulating membrane is said to extend about half way (53.5%) to the posterior end of the body. On the other hand, in our study, the undulating membrane was observed to extend more than 3/4 of the body length (72.1%) in old T, whereas in fresh T it could not be measured. Taken together, we suggest that T. vaginalis averages 26 (21-32) ${\mu}m$ in total length, with 9.5 (7.4-11.4) ${\mu}m$ of body length and 6.8 (5.3-7.7) ${\mu}m$ of width, and its undulating membrane extending 3/4 of its body length. Therefore, these findings may provide useful information for morphological characteristics of T. vaginalis.

Certification of magnification standards for the establishment of meter-traceability in microscopy (현미경의 길이표준 소급성 확립을 위한 배율 교정 시편 인증)

  • Kim J.A.;Kim J.W.;Park B.C.;Eom T.B.;Kang C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.645-648
    • /
    • 2005
  • Microscopy has enabled the development of many advanced technologies, and higher level microscopic techniques are required according to the increase of research in nano-technology and bio-technology fields. Therefore, in many applications, we need to measure the dimension of micro-scale parts accurately, not just to observe their shapes. To establish the meter-traceability in microscopy, gratings have been widely used as a magnification standard. KRISS provides the certification service of magnification standards using an optical diffractometer and a metrological AFM (MAFM). They are based on different measurement principles, and so can give complementary information for each other. In this paper, we describe the configuration of each system and measurement procedures to certificate grating pitch values of magnification standards. Several measurement results are presented, and the discussion about them are also given. Using the optical diffractometer, we can calibrate a grating specimen with uncertainty of less than 50 pm. The MAFM can measure a grating specimen of down to 100 nm pitch value, and the calibrated values usually have uncertainty less than 500 pm.

  • PDF

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Electric resistance and temperature dependence characteristics of $VO_2$ thermistor with various dimension variation (CTR(Critical Temperature Resistor) 특성을 갖는 $VO_2$ 온도센서의 dimension 변화에 대한 전기저항성 특성과 온도의존성)

  • Oh, Jun-Seok;Song, Keon-Hwa;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.228-229
    • /
    • 2009
  • $VO_2$ thermistor was fabricated on $Al_2O_3$ substrate. and has a CTR (Critical Temperature Resistor) characteristic. $VO_2$ thermistor has a about $10^6$ resistance($\Omega$) in normal temperature. But When temperature is a about $80^{\circ}C$, Resistance of $VO_2$ thermistor is a about some hundred resistance: The resistance of $VO_2$ thermistor increased with increasing length and decreasing width.

  • PDF

Analysis of Plants Shape by Image Processing (영상처리에 의한 식물체의 형상분석)

  • 이종환;노상하;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 1996
  • This study was one of a series of studies on application of machine vision and image processing to extract the geometrical features of plants and to analyze plant growth. Several algorithms were developed to measure morphological properties of plants and describing the growth development of in-situ lettuce(Lactuca sativa L.). Canopy, centroid, leaf density and fractal dimension of plant were measured from a top viewed binary image. It was capable of identifying plants by a thinning top viewed image. Overlapping the thinning side viewed image with a side viewed binary image of plant was very effective to auto-detect meaningful nodes associated with canopy components such as stem, branch, petiole and leaf. And, plant height, stem diameter, number and angle of branches, and internode length and so on were analyzed by using meaningful nodes extracted from overlapped side viewed images. Canopy, leaf density and fractal dimension showed high relation with fresh weight or growth pattern of in-situ lettuces. It was concluded that machine vision system and image processing techniques are very useful in extracting geometrical features and monitoring plant growth, although interactive methods, for some applications, were required.

  • PDF