• Title/Summary/Keyword: Leifsonia soli

Search Result 2, Processing Time 0.018 seconds

Gibberellin Production by Newly Isolated Strain Leifsonia soli SE134 and Its Potential to Promote Plant Growth

  • Kang, Sang-Mo;Khan, Abdul Latif;You, Young-Hyun;Kim, Jong-Guk;Kamran, Muhammad;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.106-112
    • /
    • 2014
  • Very few plant growth-promoting rhizobacteria (PGPR) are known to produce gibberellins (GAs). The current study aimed to isolate a phytohormone-producing PGP rhizobacterium from soil and assess its potential to enhance plant growth. The newly isolated bacterium was identified as Leifsonia soli sp. SE134 on the basis of partial 16S ribosomal RNA gene sequence. Application of L. soli culture filtrate significantly increased the biomass, hypocotyl, and root lengths of cucumber seeds as compared with non-inoculated sole medium and distilled water treated controls. Furthermore, the PGPR culture was applied to the GA-deficient mutant rice cultivar Waito-C. Treatment with L. soli SE134 significantly increased the growth of Waito-C rice seedlings as compared with controls. Upon chromatographic analysis of L. soli culture, we isolated, detected and quantified different GAs; namely, $GA_1$ ($0.61{\pm}0.15$), $GA_4$ ($1.58{\pm}0.26$), $GA_7$ ($0.54{\pm}0.18$), $GA_8$ ($0.98{\pm}0.15$), $GA_9$ ($0.45{\pm}0.17$), $GA_{12}$ ($0.64{\pm}0.21$), $GA_{19}$ ($0.18{\pm}0.09$), $GA_{20}$ ($0.78{\pm}0.15$), $GA_{24}$ ($0.38{\pm}0.09$), $GA_{34}$ ($0.35{\pm}0.10$), and $GA_{53}$ ($0.17{\pm}0.05$). Plant growth promotion in cucumber, tomato, and young radish plants further evidenced the potential of this strain as a PGP bacterium. The results suggest that GA secretion by L. soli SE134 might prove advantageous for its ameliorative role in crop growth. These findings can be extended for improving the productivity of different crops under diverse environmental conditions.

Comparative Analysis of Bacterial Diversity in the Intestinal Tract of Earthworm (Eisenia fetida) using DGGE and Pyrosequencing (DGGE 방법과 Pyrosequencing 방법을 이용한 지렁이 장내미생물의 다양성 분석)

  • Kim, Eun-Sung;Hong, Sung-Wook;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • The beneficial effects of Eisenia fetida on soil properties have been attributed to their interaction with soil microorganisms. The bacterial diversity of the intestinal tract of E. fetida was investigated by culture-dependent and culture-independent methods including denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses. In a pure culture, Lysinibacillus fusiformis (51%), Bacillus cereus (30%), Enterobacter aerogenes (21%), and L. sphaericus (15%) were identified as the dominant microorganisms. In the DGGE analyses, B. cereus (15.1%), Enterobacter sp. (13.6%), an uncultured bacterium (13.1%), and B. stearothermophilus (7.8%) were identified as the dominant microorganisms. In the pyrosequencing analyses, Microbacterium soli (26%), B. cereus (10%), M. esteraromaticum (6%), and Frigoribacterium sp. (6%) were identified as the dominant microorganisms. The other strains identified were Aeromonas sp., Pseudomonas sp., Borrelia sp., Cellulosimicrobium sp., Klebsiella sp., and Leifsonia sp. The results illustrate that culture independent methods are better able to detect unculturable microorganisms and a wider range of species, as opposed to isolation by culture dependent methods.