• Title/Summary/Keyword: Legumin

Search Result 6, Processing Time 0.019 seconds

Immunocytochemical Localization of Legumin with Developing Stages of Ginseng Endosperm Cells (발달단계에 따른 인삼 (Panax ginseng C.A. Meyer) 배유세포의 Legumin에 대한 면역세포화학적 분포)

  • Lee, Chang-Seob;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.15-29
    • /
    • 1995
  • Legumin was purified from the endosperm cells of the ginseng seed and analyzed its characteristics. Distributional patterns of the legumin in the endosperm cells were identified using the immunocytochemical method. Legumin was glycoprotein composed of two subunits, molecular weights about 33,000 and 25,000 respectively. The molecular shape of purified legumin stained negatively seems to have hexagonal structure about 10 nm in size. It was localized at the rER, dictyosomes, and in the vacuoles at the early developing stage. Legumin was glycosylated in the dictyosomes and transported from the dictyosomes to the vacuoles. Legumin was accumulated into the central vacuole via the dictyosomes while the endosperm cells were developing. The armorphous proteins containing legumin were scattered randomly within the central vacuoles, which were aggregated together and became gradually spherical shape. Legumin was distributed within the globular protein bodies in the endosperm cells of matured seed. However legumin was not found in the globoids located in the protein bodies.

  • PDF

Determination of the Synthetic Time and the Transport Pattern of Vicilin and Legumin in Ginseng Endosperm Cell Using Double Immunogold Labeling (이중 면역금입자 표지법을 이용한 인삼 배유세포내 Vicilin과 Legumin의 합성시기 및 수송방식)

  • Lee, Chang-Seob;Yu, Seong-Cheol;Kim, Woo-Kap
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Vicilin and legumin, the storage Proteins of seed, were Purified from ginseng (Panax ginseng C.A. Meyer) endosperm cells. They were immunized in rabbits, and antibodies were raised respectively. Using these two antibodies, double immunogold labeling of vicilin and legumin was carried out to determine the gap of synthetic time and the transport pattern of vicilin and legumin in the ginseng endosperm cells. Vicilin and legumin were synthesized at the same time at early embryo developmental stage. They were secreted from the Golgi bodies and accumulated into the small vacuoles. As the endosperm cells developed, vicilin and legumin localized in the small vacuoles were gradually transported toward the large central vacuole where they were stored. Protein bodies were derived from the vacuoles filled with proteins and distributed in the endosperm cells of mature red seed. Protein bodies were various in size from 1 to 8 ${\mu}{\textrm}{m}$ in which vicilin and legumin were mixed each other. The number of small particles labeled on the vicilin was greater than that of large particles labeled on the legumin in the protein bodies indicating that the amount of vicilin is higher than that of legumin in the protein bodies.

  • PDF

Legumin Accumulation in Endoplasmic Reticulum Cisternae at Early Stage of Seed Development and Protein Body Transformation in Pea Cotyledon Cells (완두의 종자 발달과정에서 소포체 내강에 대한 저장 단백질 legumin의 축적과 단백과립 변환)

  • Jeong, Byung-Kap;Lee, Sun-Hee
    • Applied Microscopy
    • /
    • v.31 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • Immunoelectron microscopy of storage protein at early stage of seed development showed legumin was firstly accumulated protein in between endoplasmic reticulum (ER) cisternae, and these accumulates were differentiated into protein body (PB) by transformation at later stage. Thin sections of pea cotyledons during the later stages of seed maturation showed three morphologically different types of protein bodies. One of these, presented as rough-surfaced cisternae with terminal dilations, which contained protein deposits and were often found interdigitated between stacks of rough endoplasmic reticulum. Conventional electron microscopy at earlier stages of cotyledon development showed this protein body type initially developed from the rough ER. This transformation of endoplasmic reticulum into a protein body is believed to represent a new pathway of protein body development.

  • PDF

Terminal Dilation and Transformation of the Protein-filled ER to Form Protein Bodies in Pea (Pisum sativum L. var, exzellenz) Cotyledons (완두 자엽에서 소포체 말단의 팽창에 의한 단백과립 발달)

  • Jeong, Byung-Kap
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.499-509
    • /
    • 1999
  • Accumulations of the storage proteins in protein storage vacuole and the differentiation of protein bodies from protein-filled ER in developing pea cotyledons have been investigated using conventional and immunoelectron microscopy. To improve the fixation quality, single cells separated enzymatically from sliced cotyledons were used. At early stages of seed development osmiophilic protein accumulates in rER lumen were observed quite often. This protein-filled ER cisternae were differentiated into cytoplasmic protein bodies at late stage by the process called terminal dilations which have been considered a principal route of the formation of cytoplasmic protein bodies somewhat later in seed maturation. Immunocytochemical labellings of the vicilin and legumin show that presence of vicilin on both of the cytoplasmic PB and PD, but limited presence of legumin only on the cytoplasmic PB at intermediate stage of seed development. Immunogold labellings of Bip, ER retention protein, were observed on the inner periphery of protein deposits in protein storage vacuole. This result was regarded that Bip can recognize and retrieve misfolded protein during active accumulation of storage protein to the PD in PSV.

  • PDF

Immunocytochemical Investigation on the Intracisternal Accumulations of Storage Protein in Pea Cotyledon Cells (완두 자엽세포의 소포체 내강에 축적된 저장 단백질에 대한 면역세포화학적 연구)

  • Jeong, Byung-Kap;Park, Hong-Duok
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • In 1980s, the fragmentation or subdivision of protein deposits at the periphery of protein storage vacuole was suggested as the only route of PB development in pea cotyledon cells. Since then, other independant processes such as terminal dilation , transformation and de novo development have been discussed as alternative routes for PB development, and today, these multiple mechanisms of PB development are accepted as a result of active investigations. For analysis of the protein accumulations in the ER cisternae during seed development, immunocytochemical gold labellings were applyed on the single cells separated by enzymatic digestion from cotyledon tissue. Anti-legumin labellings at the early stage, and anti-vicilin labellings at the intermediate stage were observed on the protein-filled ER. The $\alpha-Tip$, which is the ER retention protein, was labelled somewhat at late stage, and PPase, a sort of tonoplast membrane protein, was labelled at early stage.

  • PDF

The Degrading Patterns of Protein Bodies in the Ginseng Endosperm Cells (인삼배유세포에 존재하는 단백질체의 분해양상)

  • Lee, Chang-Seob;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.86-97
    • /
    • 1994
  • Protein bodies in the endosperm cells of mature red ginseng (Panax ginseng C.A. Meyer) were distributed evenly in the cytoplasm and their size varied from 1 to $8{\mu}m$. Three types of protein bodies were detected and they are spherical or egg-shaped ones containing homogeneous matrix only, spherical ones containing globoids, and irregular shaped ones. Protein bodies degraded in two patterns, one is to start the degration of the body from the surface toward the center, while the other is that the body was broken evenly and then degraded gradually. After degradation, only the limiting membrane remained, that causes the body to be empty. The limiting membranes fused with each other to form a large vacuole. Vicilin and legumin decreased in the endosperm cells as the protein bodies degraded gradually whereas they increased in the umbiliform layers.

  • PDF