• Title/Summary/Keyword: Left ventricular hypertrophy

Search Result 104, Processing Time 0.018 seconds

First-pass Stress Perfusion MR Imaging Findings of Apical Hypertrophic Cardiomyopathy: with Relation to LV Wall Thickness and Late Gadolinium-enhancement (심첨형 비후성 심근병증에서의 스트레스 부하 관류 자기공명영상 소견: 좌심실 벽 비후 정도와 지연 조영 증강 간의 관련성)

  • Yoo, Jin Young;Chun, Eun Ju;Kim, Yeo-Koon;Choi, Sang Il;Choi, Dong-Ju
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.7-16
    • /
    • 2014
  • Purpose : To evaluate the prevalence and pattern of perfusion defect (PD) on first-pass stress perfusion MR imaging in relation with the degree of left ventricular hypertrophy (LVH) and late gadolinium-enhancement (LGE) in patients with apical hypertrophic cardiomyopathy (APH). Materials and Methods: Cardiac MR imaging with first-pass stress perfusion, cine, and LGE sequence was performed in 26 patients with APH from January 2008 to December 2012. We analyzed a total of 416 segments for LV wall thickness on end-diastolic phase of cine images, and evaluated the number of hypertrophied segment and number of consecutive hypertrophied segment (NCH). We assessed the presence or absence of PD and LGE from all patients. If there was PD, we subdivided the pattern into sporadic (sporadic-PD) or ring (ring-PD). Using univariate logistic method, we obtained the independent predictor for presence of overall PD and ring-PD. Results: PD on stress perfusion MRI was observed in 20 patients (76.9%), 12 of them (60%) showed ring-PD. Maximal LV wall thickness and number of hypertrophied segment were independent predictors for overall PD (all, p < 0.05). NCH with more than 3 segments was an additional independent factor for ring-PD. However, LGE was not statistically related with PD in patients with APH. Conclusion: About three quarters of the patients with APH showed PD, most of them represented as ring-PD. LVH degree or distribution was related with pattern of PD, however, LGE was not related with PD. Therefore, the clinical significance of PD in the patients with APH seems to be different from those with non-APH, and further comparison study between the two groups should be carried out.

한국인 좌심실 비대증 환자들에서 파브리병 선별검사의 의의

  • Park, Hyeong-Du;Jo, Seong-Yun;Lee, Su-Yeon;Jeon, Eun-Seok;Park, Seung-U;Lee, Sang-Hun;Lee, Sang-Cheol;Choe, Jin-O;Park, Seong-Ji;Jang, Seong-A;Kim, Hyeong-Gwan;Gi, Chang-Seok;Kim, Jong-Won;Jin, Dong-Gyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • Objectives: Fabry disease (FD) is a lysosomal storage disease caused by the inappropriate accumulation of globotriaosylceramide (Gb3) in tissues due to a deficiency in the enzyme ${\alpha}$-galactosidase A. Hypertrophic cardiomyopathy is one of the chronic complications of FD. We tried to evaluate the prevalence of Fabry disease in the Korean patients with left ventricular hypertrophy (LVH). Methods: A total of 257 patients with LVH were recruited and they were 172 males (mean 56 years, range 30-81 years) and 84 females (mean 66 years, range 45-85 years). Urinary Gb3 was used to screen FD by high performance liquid chromatography-tandem mass spectrometry. Confirmatory tests were done by alpha-galactosidaseA activity using fluorometric assay and by GLA mutation analysis using sequencing. Results: Four patients were screening positive by urinary Gb3 analysis (cutoff, 25 ug/mmol creatinine). But, one female patient was diagnosed with FD confirmed by enzyme analysis in leukocytes as well as by genetic analysis (1/257 patients, 0.4%). She showed 54.3 ug/mmoL creatinine of Gb3 and 15.5 nmole/hr/mg protein (reference range, $55.2{\pm}12.7nmole/hr/mg$ protein) of alphagalactosidase A activity. And she had a heterozygous GLA mutation of c.796G>A (p.D266N). Her daughter was found to be a carrier for FD confirmed by GLA mutation analysis. Asymptomatic carrier showed 25.5ug/mmol creatinine of Gb3 and 42.5 nmole/hr/mg protein (reference range, $55.2{\pm}12.7nmole/hr/mg$ protein) of alpha-galactosidase A activity. Conclusions: The prevalence of FD in Koran patients with LVH was detected as 0.4%. Although the prevalence seems to be low, screening studies are of great importance for detecting hidden cases as well as for identifying other effected family members.

Comparison of Electrocardiographic Time Intervals, Amplitudes and Vectors in 7 Different Athletic Groups (운동종목별(運動種目別) 선수(選手)의 심전도시간간격(心電圖時間間隔), 파고(波高) 및 벡터의 비교(比較))

  • Kwon, Ki-Young;Lee, Won-Jung;Hwang, Soo-Kwan;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.61-72
    • /
    • 1985
  • In order to compare the cardiac function of various groups of athletes, the resting electrocardiographic time intervals, amplitudes and vectors were analyzed in high school athletes of throwing(n=7), jumping(n=11), short track(n=8), long track(n=14), boxing(n=7), volleyball(n=8) and baseball(n=9), and nonathletic control students(n= 19). All athletic groups showed a significantly longer R-R interval(0.96-1.09 sec) than the controls (0.78 sec). Therefore, the heart rate was significantly slower in atheletes than in the control, but was not different among the different athletic groups. R-R interval is the sum of intervals of P-R, 0-T and T-P: P-R and Q-T intervals showed no difference among the control and athletic groups, but T-P interval in the jump, short track, long track and boxing groups was significantly higher than the control. R-B interval showed a significant correlation with T-P or Q-T intervals but no correlation with P-R or QRS complex. Comparing the amplitude of electrocardiographic waves, the athletic groups showed a lower trend in P wave than the controls. T wave in lead $V_5\;(Tv_5)$ was similar in the athletic and control groups. The long track group showed a significantly higher waves of $Rv_5$, $Sv_1$, and the sum of $Rv_5$ and $Sv_1$ than not only the controls but also the other athletic group. The angles of P, QRS, and T vector in the frontal and horizontal planes were not different among the control and all the athletic groups. Each athletic group stowed a lower trend in amplitude of P vector in the frontal plane, but in horizontal plane, throwing, jump, short track and baseball groups showed a significantly lower than the controls. The amplitude of QRS and T vector was similar in the athletic and control groups, but only the baseball group showed a significantly higher QRS vector in the frontal plane. In taken together, all the athletic groups showed a slower heart rate than the controls, mainly because of elongated T-P interval. Comparing the electrocardiographic waves and vector, the athletic groups showed lower amplitudes of P wave and P vector than the controls. Values of $Rv_5$ and $Sv_1$ strongly suggest that only the long distance runners among the various athletic groups developed a left ventricular hypertrophy.

  • PDF

Effect of Physical Training on Electrocardiographic Amplitudes and the QRS Vector (체력단련(體力鍛練)이 심전도파고(心電圖波高)와 QRS벡타에 미치는 효과(效果))

  • Yu, Wan-Sik;Hwang, Soo-Kwan;Kim, Hyeong-Jin;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.51-65
    • /
    • 1984
  • In an effort to elucidate the effect of physical training on the electrocardiographic amplitudes, QRS vector, axis and QRS vector amplitude, electrocardiograms were recorded before and 1, 5 and 10 minutes after 3 minute rebounder exercise in 23 healthy male students aged between 18 and 21 years in two groups of athletes and non-athletes. ECG amplitudes were measured from lead I, $V_1$ and $V_5$ and axis and amplitudes of QRS vectors were measured from lead I and III in frontal plane, from lead $V_2$ and lead $V_6$ in horizontal plane. The results obtained are summarized as follows. ECG amplitudes: The R wave amplitude was $23.38{\pm}1.14\;mm$ in athletes which was higher than $17.91{\pm}2.00\;mm$ in non-athletes. After exercise, the difference in two groups remained significant throughout the recovery period. The S wave amplitude was increased significantly, and the T wave amplitude was decreased in both groups after exercise. The P wave amplitude was increased in both groups after exercise, and it was lower in athletes than in non-athletes. The PQ segment amplitude was zero in athletes but negative in non-athletes than in the resting state. The J point amplitude was positive in resting state and was negative after exercise in both groups. J+0.08 sec point amplitude was also lowered after exercise, and it was higher in athletes than in non-athletes. Therefore the whole ST segment was proved to be decreased after exercise. The summated amplitude of R in $V_5$ plus S in $V_1$ was $38.74{\pm}2.71\;mm$ in athletes which was higher than $32.82{\pm}2.90\;mm$ in non-athletes. After exercise, it was also significantly higher in athletes than in non-athletes. Axis of QRS vector: In frontal plane, axis of QRS vector was $62.7{\pm}7.36^{\circ}$ in athletes, it showed no significant difference between the two groups. In horizontal plane, axis of QRS vector was $-23.5{\pm}7.2^{\circ}$ in athletes which was significantly higher than $-38.8{\pm}8.2^{\circ}$ in non-athletes. After exercise, it was significantly higher than the resting state in both groups. Amplitude of QRS vector : In frontal plane, amplitude of QRS vector was $13.86{\pm}1.44\;mm$ in athletes which was significantly higher than $9.62{\pm}0.97\;mm$ in non-athletes. After exercise, it was also significantly higher in athletes than in non-athletes. In horizontal plane, amplitude of QRS vector was $19.82{\pm}2.10\;mm$ in athletes which was significantly higher than $16.90{\pm}1.39\;mm$ in non-athletes. After exercise, it was also significantly higher in athletes than in non-athletes. From the above, these results indicate that R wave amplitude in athletes was significantly higher than in non-athletes before and after exercise, and that the summated amplitude of R in $V_5$ plus S in $V_1$ in athletes was also $38.74{\pm}2.71\;mm$ suggesting a left ventricular hypertrophy We should note that the PQ segment and ST segment amplitude were higher in athletes than in non-athletes, and they were decreased with exercise in both groups. In particular, the fact that amplitudes of QRS vector in frontal plane or in horizontal plane were significantly greater in athletes than in non-athletes may be an index in evaluating athletes.

  • PDF