• Title/Summary/Keyword: Leaving group

Search Result 275, Processing Time 0.025 seconds

Kinetic Study on SNAr Reaction of 1-Y-Substituted-phenoxy-2,4-dinitrobenzenes with Hydroxide Ion: Effect of Substituent Y on Reactivity and Reaction Mechanism

  • Kang, Tae-Ah;Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2135-2138
    • /
    • 2014
  • A kinetic study is reported for the SNAr reaction of 1-Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1h) with OH- in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The second-order rate constant ($k_{OH^-}$) increases as the substituent Y in the leaving group changes from an electron-donating group (EDG) to an electronwithdrawing group (EWG). The Br${\o}$nsted-type plot for the reactions of 1a-1h is linear with ${\beta}_{lg}$ = -0.16, indicating that the reactivity of substrates 1a-1h is little affected by the leaving-group basicity. A linear Br${\o}$nsted-type plot with ${\beta}_{lg}=-0.3{\pm}0.1$ is typical for reactions reported previously to proceed through a stepwise mechanism in which formation of a Meisenheimer complex is the rate-determining step (RDS). The Hammett plot correlated with ${\sigma}_Y{^{\circ}}$ constants results in a much better correlation than that correlated with ${\sigma}_Y{^-}$constants, implyng that no negative charge is developing on the O atom of the leaving group (or expulsion of the leaving group is not advanced at all in the TS). This excludes a possibility that the $S_NAr$ reaction of 1a-1h with $OH^-$ proceeds through a concerted mechanism or via a stepwise pathway with expulsion of the leaving group being the RDS. Thus, the current reactions have been concluded to proceed through a stepwise mechanism in which expulsion of the leaving group occurs rapidly after the RDS.

Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State

  • Lee, Ik-Choon;Lee, Hai-Whang;Yu, Young-Kab
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.993-998
    • /
    • 2003
  • In the aminolysis of phenacyl bromides ($YC_6H_4COCH_2Br$) with benzylamines ($XC_6H_4CH_2NH_2$) in acetonitrile, the Bronsted βx (βnuc) values observed are rather low ( βX = 0.69-0.73). These values are similar to those (βx $^~_=$ 0.7) for other aminolysis reactions of phenacyl compounds with anilines and pyridines, but are much smaller than those ( βx = 1.1-2.5) for the aminolysis of esters with benzylamines which are believed to proceed stepwise with rate-limiting expulsion of the leaving group. The relative constancy of the βx values (βx $^~_=$ 0.7) irrespective of the amine, leaving group and solvent can be accounted for by a bridged type transition state in the rate-limiting expulsion of the leaving group. Thus the aminolysis of phenacyl derivatives are proposed to proceed stepwise through a zwitterionic tetrahedral intermediate ($T^{\pm}$), with rate-limiting expulsion of the leaving group from $T^{\pm}$. In the transition state, the amine is bridged between the carbonyl and α-carbons, which leads to negligible effect of amine on the leaving group expulsion rate.

Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile

  • Adhikary, Keshab Kumar;Lumbiny, Bilkis Jahan;Kim, Chan-Kyung;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.851-855
    • /
    • 2008
  • The reactions of O,O-diphenyl Z-S-phenyl phosphorothiolates with X-pyridines have been studied kinetically in acetonitrile at $35.0{^{\circ}C}$. The Hammett plots for substituent (Z) variations in the leaving group (log $k_2$ vs. $\sigma$ Z) are biphasic concave downwards with breaks at Z = H. The large magnitudes of ${\rho}X(\rho_{nuc})$, ${\beta}X(\rho_{nuc})$, and the cross-interaction constant, $\rho$XZ, suggest frontside nucleophilic attack toward the leaving group. The sign reversal of $\rho$Z from positive in $\sigma$ Z $\leq$ 0 to negative in $\sigma$ Z $\geq$ 0 is interpreted as the change in mechanism from concerted to stepwise with rate-limiting expulsion of the leaving group. The anomalous negative sign of $\rho$ Z for leaving groups with electron-withdrawing substituents is interpreted as the intramolecular ligand exchange process of the leaving group from the equatorial position in the intermediate to the apical position in the TS.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

The Reaction of Benzyl Arenesulfonate with N,N-Dimethylanilines (III). Substituent Effects of Leaving Group for Benzyl Arenesulfonate (Benzyl Arenesulfonate와 N,N-디메틸아닐린과의 反應 (第3報). Benzyl Arenesulfonate의 難脫基의 置換基 效果)

  • Soo-Dong Yoh
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.449-453
    • /
    • 1975
  • Substituent effect of the leaving groups of the reaction of benzyl arenesulfonate with dimethylanilines in acetone at $35^{\circ}C$ was obtained with the following results. 1. Substituent effect of the leaving groups was not variable when changed from pyridine to N,N-dimethylaniline in nucleophile 2.In acetone, the Hammett ${\sigma}$ constant of p-MeO of the leaving group was -0.35. 3. The weaker the nucleophilicity in dimethylaniline, the stronger the movement of electron from N to C, and the cleavage of the C${\ldots}$0 bond in transition state proceeds.

  • PDF

Cooperative Effects of Solvatochromic Parameters on the Ionizations of tert-Butyl Halides in MeOH-1,1,2,2-Tetrachloroethane Mixtures (MeOH-1,1,2,2-Tetrachloroethane 혼합용매에서 tert-Butyl Halides의 이온화에 미치는 분광용매화변수들의 협동효과)

  • Yeol Sakong;Shi Choon KIm;Jae Bum Choo
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.265-272
    • /
    • 1986
  • Kinetic studies for the methanolysis of tert-butyl halides (t-BuCl, t-BuBr, t-BuI) were carried out in MeOH-1,1,2,2-tetrachloroethane mixtures. The solvatochromic comparison method was used with six indicators to analyze solvent effects on the ionizations of tert-butyl halides. It was shown that the cooperative effect of solvent polarity-polarizability was the most important factor influenced on the methanolysis rates of tert-butyl halides, but the electrophilic assistance for halide leaving group and the nucleophilic assistance for tert-butylium ion were considerably influential, too. And it was found that the electrophilic assistance caused by hydrogen bonding and the nucleophilic assistance for carbon center were stronger for more basic leaving group ($I^-) and more polarizable leaving group(t-BuCl

  • PDF

Selective Dehalogenative Homocoupling of Haloarylsulfonates by th Use of Palladium Catalyst

  • Lee, Tae Su;An, Jeong Ho;Kim, Jin Hwan;Bae, Jin Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.375-378
    • /
    • 2001
  • The palladium catalyzed dehalogenative homocoupling of haloarylsulfonates under reductive conditions has proceeded selectively depending on the type of the halogen. Thus, an iodo or a bromo leaving group of haloarylsulfonates was homocoupled to gi ve symmetrical biaryls in good yields with the sulfonate group intact, whereas a chloro leaving group gave no reaction under the conditions used. When the more reactive nickel catalyst was employed instead of the palladium catalyst in the reaction, both dehalogenative and desulfonative homocouplings of haloarylsulfonates occurred regardless of the type of the halogen used.

The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion

  • Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2393-2397
    • /
    • 2009
  • Second-order rate constants ($k_{HOO}$‒) have been measured spectrophotometrically for nucleophilic substitution reactions of Y-substituted phenyl benzenesulfonates (1a-g) with $HOO^-$ ion in $H_2O$ at $25.0\;{\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot is linear with ${\beta}_{lg}$ = ‒0.73. The Hammett plot correlated with with ${\sigma}^-$ constants results in much better linearity than ${\sigma}^o$ constants, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS) either in a stepwise mechanism or in a concerted pathway. However, a stepwise mechanism in which departure of the leaving group occurs in the RDS has been excluded since $HOO^-$ ion is more basic and a poorer leaving group than the leaving Y-substituted phenoxide ions. Thus, the reactions of 1a-g with $HOO^-$ ion have been concluded to proceed through a concerted mechanism. The $\alpha$-nucleophile $HOO^-$ ion is more reactive than its reference nucleophile $OH^-$ ion although the former is ca. 4 p$K_a$ units less basic than the latter (i.e., the $\alpha$-effect). TS stabilization through intramolecular H-bonding interaction has been suggested to be irresponsible for the $\alpha$-effect shown by $HOO^-$ ion, since the magnitude of the $\alpha$-effect is independent of the electronic nature of substituent Y in the leaving group. GS destabilization through desolvation of $HOO^-$ ion has been concluded to be responsible for the $\alpha$-effect found in the this study.

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).

Leaving-Group Substituent Controls Reactivity and Reaction Mechanism in Aminolysis of Phenyl Y-Substituted-Phenyl Carbonates

  • Kang, Ji-Sun;Song, Yoon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2023-2028
    • /
    • 2013
  • A kinetic study is reported for the nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5k) with piperidine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [piperidine] for the reactions of substrates possessing a strong electron-withdrawing group (EWG) in the leaving group (i.e., 5a-5i) are linear and pass through the origin. In contrast, the plots for the reactions of substrates bearing a weak EWG or no substituent (i.e., 5j or 5k) curve upward, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. Thus, it has been suggested that the reactions of 5a-5i proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate (i.e., $T^{\pm}$) while those of 5j and 5k proceed through a stepwise mechanism with two intermediates (i.e., $T^{\pm}$ and its deprotonated form $T^-$). The slope of the Br${\o}$nsted-type plot for the second-order rate constants (i.e., $k_N$ or $Kk_2$) changes from -0.41 to -1.89 as the leaving-group basicity increases, indicating that a change in the rate-determining step (RDS) occurs. The reactions of 5a-5k with piperidine result in larger $k_1$ values than the corresponding reactions with ethylamine.