• Title/Summary/Keyword: Leather industry wastewater

Search Result 12, Processing Time 0.02 seconds

Economical Assessment of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피 가공 및 제조업 폐수처리시설의 경제성 평가)

  • Kim, Jaehoon;Yang, Hyung jae;Kwon, Oh sang;Lee, Sung jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.131-137
    • /
    • 2007
  • Industrial wastewater management guideline and evaluation model of Best Available Technologies for the leather tanning and finishing industry was developed as an economical evaluation model using evaluation of BAT including economical evaluation combined with cost analysis model and cost annualization model in considering of economical factors and non-water environmental factors. It was verified that approximately 10% will be increased annually to modify conventional treatment process ($3,700m^3/d$) of J leather wastewater treatment plant to advanced process of K leather wastewater treatment plant.

Assessment of Best Available Technology of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피가공 및 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for leather tanning and finishing industry. For the evaluation BAT, a subcategorization for the industry considering wastewater characteristics, source equipments, raw material and so on should be suggested. Three subcategories: A) Unharing, Chrome Tan, Retan-Wet Finish, B) Chrome Tan, Retan-Wet Finish, and C) Furskins were proposed in this study. Wastewater discharged from the each category contains high concentration of COD, chrome, nitrogen and sulfide. In particular, the concentration of nitrogen from the subcategory A is significantly greater. Twenty sites were surveyed and wastewater qualities were analyzed. Therefore, six different technologies were applied to the subcategory A for the end-of-pipe treatment technology, and a technology was used in the subcategory B and C, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options for each subcategories: A) primary chemical precipitation + modified Ludzack-Ettinger process (MLE) + secondary chemical precipitation, B) chemical precipitation + typical activated-sludge process + Fenton oxidation, C) chemical precipitation + typical activated-sludge process + batch Fenton oxidation or batch activated carbon treatment were selected as the BAT, respectively.

Assessment of Effluent Limitation for K Leather Industry Wastewater (K피혁폐수 처리시설에 대한 배출허용기준 평가)

  • Yang, Hyung-Jae;Kwon, Oh-Sang;Kim, Jae-Hoon;Lee, Sung-Jong;Jung, Dong-Il;Kim, Sang-Hoon
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2007
  • K leather industry wastewater treatment plant(advanced treatment process) was selected to evaluate effluent quality and pollutants removal efficiencies. $BOD_5$ concentration of effluent was $3.95mg/{\ell}$ and its removal efficiency was 99.8%. Also, most of other pollutants removal efficiencies were over 90% as well. And 95% reliability of effluent concentration were $106.8mg/{\ell}$ of CODmn, $86mg/{\ell}$ of SS, $72.04mg/{\ell}$ of TN that is greater than the effluent limitation, $0.98mg/{\ell}$ of ABS, $1.8mg/{\ell}$ of n-Hexane, $9.7mg/{\ell}$ of $BOD_5$ and $0.11mg/{\ell}$ of Cr.

Microbial Community of Tannery Wastewater Involved in Nitrification Revealed by Illumina MiSeq Sequencing

  • Ma, Xiaojian;Wu, Chongde;Jun, Huang;Zhou, Rongqing;Shi, Bi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1168-1177
    • /
    • 2018
  • The aim of this study was to investigate the microbial community of three tannery wastewater treatment plants (WWTPs) involved in nitrification by Illumina MiSeq sequencing. The results showed that highly diverse communities were present in tannery wastewater. A total of six phyla, including Proteobacteria (37-41%), Bacteroidetes (6.04-16.80), Planctomycetes (3.65-16.55), Chloroflexi (2.51-11.48), Actinobacteria (1.91-9.21), and Acidobacteria (3.04-6.20), were identified as the main phyla, and Proteobacteria dominated in all the samples. Within Proteobacteria, Beta-proteobacteria was the most abundant class, with the sequence percentages ranging from 9.66% to 17.44%. Analysis of the community at the genus level suggested that Thauera, Gp4, Ignavibacterium, Phycisphaera, and Arenimonas were the core genera shared by at least two tannery WWTPs. A detailed analysis of the abundance of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) indicated that Nitrosospira, Nitrosomonas, and Nitrospira were the main AOB and NOB in tannery wastewater, respectively, which exhibited relatively high abundance in all samples. In addition, real-time quantitative PCR was conducted to validate the results by quantifying the abundance of the AOB and total bacteria, and similar results were obtained. Overall, the results presented in this study may provide new insights into our understanding of key microorganisms and the entire community of tannery wastewater and contribute to improving the nitrogen removal efficiency.

Efficient aerobic denitrification in the treatment of leather industry wastewater containing high nitrogen concentration

  • Kang, Kyeong Hwan;Lee, Geon;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • To treat leather industry wastewater (LIW) containing high nitrogen concentration, eight aerobic denitrifiers were isolated from sludge existing in an LIW-treatment aeration tank. Among them, one strain named as KH8 had showed the great ability in denitrification under an aerobic condition, and it was identified as Pseudomonas aeruginosa R12. The aerobic denitrification ability of the strain KH8 was almost comparable to its anaerobic denitrification ability. In lab-scale aerobic denitrifications performed in 1-L five-neck flasks for 48 hr, denitrification efficiency was found to be much improved as the strain KH8 held a great majority in the seeded cells. From the nitrogen balance at the cell-combination ratio of 10:1 (the strain KH8 to the other seven isolates) within the seeded cells, the percentage of nitrogen loss during the aerobic denitrification process was estimated to be 58.4, which was presumed to be converted to $N_2$ gas. When these seeded cells with lactose were applied to plant-scale aeration tank for 56 day to treat high-strength nitrogen in LIW, the removal efficiencies of $COD_{Cr}$ and TN were achieved to be 97.0% and 89.8%, respectively. Under this treatment, the final water quality of the effluent leaving the treatment plant was good enough to meet the water-quality standards. Consequently, the isolated aerobic denitrifiers could be suitable for the additional requirement of nitrogen removal in a limited aeration-tank capacity. To the best of our knowledge, this is the first report of aerobic denitrifiers applied to plant-scale LIW treatment.

Statistical Characteristics of An Advanced Wastewater Treatment Plant for Leather Industry (피혁폐수 고도처리시설의 통계학적 특성)

  • Yang, H.J.;Kwon, O.S.;Kim, J.H.;Kim, S.H.;Lee, S.J.;Jung, D.I.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.740-747
    • /
    • 2007
  • The advanced wastewater treatment plant of leather industry was selected to evaluated with its effluent water quality and statistical characteristics. Most of pollutants removal efficiencies were over 90% as well. And 95% reliability of effluent concentration were 106.8 mg/L of $COD_{mn}$, 72.04 mg/L of TN. However Effluent quality of TN exceeds the regulated limit. The range of coefficient of variation (CV) were between 0.18 and 2.49. Also, coefficient of reliability (COR) were between $0.03(BOD_5){\sim}0.63(COD_{mn})$ and 0.43 in terms of T-N, $Z_{l-a}$(Normalized Percentiles) value were 55.7 and 2.25 in terms of $BOD_5$ and T-N as shown in the following table.

A study on new treatment chemical for leather wastewater; I. Development of new organic coagulant (새로운 피혁폐수 처리제에 관한 연구; I. 새로운 유기 응결제의 개발)

  • Jung, Maeng-Joon;Lee, Chul-Jae;Han, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • As the interest in environmental pollution resulting from recent industrial development is converging, wastewater treatment problem of dying processing is one of important pending issue. Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. For flocculation and coagulation action chemical agents to add back, addition of chemical agents forms floc of could settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that improving organic matter and chromaticity of treated water of processing epochally using organic coagulant informed positive ion co-polymerization superior in color wastewater through this research.

  • PDF

Ecotoxicological Test on Various Industrial Effluent Using Mayfly Egg, Ephemera orientalis (동양하루살이 알을 이용한 산업폐수 생태독성평가)

  • Mo, Hyoung-ho;Son, Jino;Jung, Jinho;Shin, Key-Il;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.212-215
    • /
    • 2016
  • We developed a new ecotoxicological test method using native test species, eggs of Ephemera orientalis, and five kinds of industrial wastewater were tested to validate the test method. The water samples were collected in Jun 2006 from the following industries: pesticide, metal plating, PCB, leather1, and leather2. Wastewater and effluent were diluted by distilled water, respectively, to prepare various concentrations, 100, 50, 25, 12.5, 6.3, 3.1, and 0%. For the egg bioassay, 20 freshly laid eggs (<24 h old) were exposed to test solutions in a Petri dish ($52{\times}12mm$) at $20^{\circ}C$ with photoperiod of 16 h light and 8 h dark for 14 days. The median egg hatching concentrations (EHC50) were estimated using Probit analysis. All EHC50s of wastewater were less than 3.1%, which meant very high ecotoxicity except for the wastewater of PCB industry having 6.1% of EHC50. Among the effluents, the least toxic effluent was from pesticide industry having 58% of EHC50, while the effluent of leather2 was the most toxic having 7.3% of EHC50.

A study on New Treatment Chemical for Leather Wastewater; III. COD Efficiency of Inorganic Coagulant (새로운 피혁폐수 처리제에 관한 연구; III. 무기 응집제의 COD 효율)

  • Park, Jung-Hoi;Lee, Chul-Jae;Choi, Hyun-Kuk;Jung, Maeng-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.107-111
    • /
    • 2008
  • Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. Flocculation and coagulation by addition of chemical agents forms floc settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that COD efficiency for wastewater by using inorganic coagulant.

  • PDF

Characteristics of Heavy Metal Removal from Aqueous Solutions using Leather Industry by-products (피혁산업 부산물에 의한 용존 중금속 제거 특성)

  • Kim, Keun-Han;Lee, Nam-Hee;Paik, In-Kyu;Park, Jae-Hyung;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.417-426
    • /
    • 2010
  • In this study, ten different bio-adsorbents were prepared by immobilization of vegetable tannins such as mimosa(Catechol Tannin) and chestnut(Pyrogallol Tannin) on the collagen matrix which was derived from during leather manufacturing processing. Removal efficiency of Cu(II), Cd(II), Zn(II), Pb(II), Cr(III) by each bio-adsorbent in synthetic wastewater was evaluated by a laboratory-scale batch reactor at different reaction conditions. When mimosa was used as a vegetable tannin, the penetration efficiency of mimosa into the inner bundle of fiber depended on the dose of the naphthalene condensated penetrant; 3% ${\geq}$ 1.5% > 0%. For all bio-adsorbents, removal of heavy metal ions was not observed below pH 3.0 but was rapidly increased between pH 3.0 and 6.0, showing near complete removal of all heavy metal ions except Zn(II) above pH 6.0. Removal of Cr(III) was quite similar for all bio-adsorbents while removal of Cu(II), Zn(II) and Pb(II) was higher by bio-adsorbents immobilized with chestnut than that by mimosa. Adsorption of Pb(II) and Cu(II) by S10 bio-adsorbent was little affected by the presence of monovalent and divalent electrolytes as well as variation of 1000 times ionic concentration with $NaNO_3$.