• 제목/요약/키워드: Least Squares Support Vector Machine

검색결과 67건 처리시간 0.016초

Software Reliability Assessment with Fuzzy Least Squares Support Vector Machine Regression

  • Hwang, Chang-Ha;Hong, Dug-Hun;Kim, Jang-Han
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.486-490
    • /
    • 2003
  • Software qualify models can predict the risk of faults in the software early enough for cost-effective prevention of problems. This paper introduces a least squares support vector machine (LS-SVM) as a fuzzy regression method for predicting fault ranges in the software under development. This LS-SVM deals with the fuzzy data with crisp inputs and fuzzy output. Predicting the exact number of bugs in software is often not necessary. This LS-SVM can predict the interval that the number of faults of the program at each session falls into with a certain possibility. A case study on software reliability problem is used to illustrate the usefulness of this LS -SVM.

Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model

  • Ye, Minquan;Sun, Jingyi;Huang, Shenhai
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.559-565
    • /
    • 2019
  • In order to alleviate the environmental pressure caused by production process of thermal power plants, the application of cleaner production is imperative. To estimate the implementation effects of cleaner production in thermal plants and optimize the strategy duly, it is of great significance to take a comprehensive evaluation for sustainable development. In this paper, a hybrid model that integrated the analytic hierarchy process (AHP) with least squares support vector machine (LSSVM) algorithm optimized by grid search (GS) algorithm is proposed. Based on the establishment of the evaluation index system, AHP is employed to pre-process the data and GS is introduced to optimize the parameters in LSSVM, which can avoid the randomness and inaccuracy of parameters' setting. The results demonstrate that the combined model is able to be employed in the comprehensive evaluation of the cleaner production in the thermal power plants.

Two-step LS-SVR for censored regression

  • Bae, Jong-Sig;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.393-401
    • /
    • 2012
  • This paper deals with the estimations of the least squares support vector regression when the responses are subject to randomly right censoring. The estimation is performed via two steps - the ordinary least squares support vector regression and the least squares support vector regression with censored data. We use the empirical fact that the estimated regression functions subject to randomly right censoring are close to the true regression functions than the observed failure times subject to randomly right censoring. The hyper-parameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation function. Experimental results are then presented which indicate the performance of the proposed procedure.

Prediction Intervals for LS-SVM Regression using the Bootstrap

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.337-343
    • /
    • 2003
  • In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Variable selection for multiclassi cation by LS-SVM

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.959-965
    • /
    • 2010
  • For multiclassification, it is often the case that some variables are not important while some variables are more important than others. We propose a novel algorithm for selecting such relevant variables for multiclassification. This algorithm is base on multiclass least squares support vector machine (LS-SVM), which uses results of multiclass LS-SVM using one-vs-all method. Experimental results are then presented which indicate the performance of the proposed method.

가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정 (Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines)

  • 노성균;심주용;황창하
    • 응용통계연구
    • /
    • 제21권1호
    • /
    • pp.159-168
    • /
    • 2008
  • 수익률 기간구조(term structure of interest rates, 이하 수익률곡선)는 자료의 성격이 경시적(longitudinal)이므로 만기까지 기간과 시간을 동시에 입력변수로 고려해야만 유용하고 효율적인 함수추정이 가능하다. 고러나 이러한 방법은 다루어야 하는 자료가 대용량이기 때문에 대용량 자료에 적합하고 실행속도가 빠른 추정기법을 개발하는 것이 필요하다. 한편 자료에 내재하는 자기상관성 구조 때문에 과대 적합된 추정 결과를 얻기 쉽다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해서 가중 LS-SVM(least squares support vector machine, 최소제곱 서포트벡터기계)의 혼합모형을 제안한다. 미국 재무부 채권에 대한 사례연구를 통해서 추정 결과가 증권시장 붕괴 같은 이례적 사건의 현상을 잘 반영하고 있음을 확인할 수 있었다.

생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계 (Mixed effects least squares support vector machine for survival data analysis)

  • 황창하;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.739-748
    • /
    • 2012
  • 최소제곱 서포트벡터기계 (least squares support vector machine)는 분류 및 비선형 회귀분석에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 각 집단별로 생존자료가 관측된 경우 적용할 수 있는 LS-SVM을 제안한다. 제안된 모형은 임의우측 중도절단자료를 비선형 회귀모형에 적용할 수 있게 Kaplan- Meier의 중도절단분포의 추정값을 이용하여 구해진 가중값을 사용하고, 집단 간의 변동을 나타내기 위하여 임의효과항을 포함한다. 벌칙상수와 커널모수의 최적값을 구하기 위하여 일반화 교차타당성함수가 사용되고 모의실험에서는 임의효과항을 포함하지 않은 LS-SVM과 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.