• Title/Summary/Keyword: Least Mean Square Adaptive Filter

Search Result 126, Processing Time 0.034 seconds

Implementation of adaptive filters using fast hadamard transform (고속하다마드 변환을 이용한 적응 필터의 구현)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

Research on Noise Reduction Algorithm Based on Combination of LMS Filter and Spectral Subtraction

  • Cao, Danyang;Chen, Zhixin;Gao, Xue
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.748-764
    • /
    • 2019
  • In order to deal with the filtering delay problem of least mean square adaptive filter noise reduction algorithm and music noise problem of spectral subtraction algorithm during the speech signal processing, we combine these two algorithms and propose one novel noise reduction method, showing a strong performance on par or even better than state of the art methods. We first use the least mean square algorithm to reduce the average intensity of noise, and then add spectral subtraction algorithm to reduce remaining noise again. Experiments prove that using the spectral subtraction again after the least mean square adaptive filter algorithm overcomes shortcomings which come from the former two algorithms. Also the novel method increases the signal-to-noise ratio of original speech data and improves the final noise reduction performance.

Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks (신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현)

  • Moon, Byoung-Jin;Kim, Kwang-Hee;Lee, Bae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.81-89
    • /
    • 1999
  • Image obtained by incomplete communication always include noise, blur and distortion, etc. In this paper, we propose and apply the new spatial filter algorithm, called an optimal adaptive generalized stack filter(AGSF), which optimizes adaptive generalized stack filter(AGSF) using neural network weight learning algorithm of back-propagation learning algorithm for improving noise removal and edge preservation rate. AGSF divides into two parts: generalized stack filter(GSF) and adaptive multistage median filter(AMMF), GSF improves the ability of stack filter algorithm and AMMF proposes the improved algorithm for reserving the sharp edge. Applied to neural network theory, the proposed algorithm improves the performance of the AGSF using two weight learning algorithms, such as the least mean absolute(LAM) and least mean square (LMS) algorithms. Simulation results of the proposed filter algorithm are presented and discussed.

  • PDF

A Square Root Normalized LMS Algorithm for Adaptive Identification with Non-Stationary Inputs

  • Alouane Monia Turki-Hadj
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.18-27
    • /
    • 2007
  • The conventional normalized least mean square (NLMS) algorithm is the most widely used for adaptive identification within a non-stationary input context. The convergence of the NLMS algorithm is independent of environmental changes. However, its steady state performance is impaired during input sequences with low dynamics. In this paper, we propose a new NLMS algorithm which is, in the steady state, insensitive to the time variations of the input dynamics. The square soot (SR)-NLMS algorithm is based on a normalization of the LMS adaptive filter input by the Euclidean norm of the tap-input. The tap-input power of the SR-NLMS adaptive filter is then equal to one even during sequences with low dynamics. Therefore, the amplification of the observation noise power by the tap-input power is cancelled in the misadjustment time evolution. The harmful effect of the low dynamics input sequences, on the steady state performance of the LMS adaptive filter are then reduced. In addition, the square root normalized input is more stationary than the base input. Therefore, the robustness of LMS adaptive filter with respect to the input non stationarity is enhanced. A performance analysis of the first- and the second-order statistic behavior of the proposed SR-NLMS adaptive filter is carried out. In particular, an analytical expression of the step size ensuring stability and mean convergence is derived. In addition, the results of an experimental study demonstrating the good performance of the SR-NLMS algorithm are given. A comparison of these results with those obtained from a standard NLMS algorithm, is performed. It is shown that, within a non-stationary input context, the SR-NLMS algorithm exhibits better performance than the NLMS algorithm.

Reverse Filtering of Sound Field by Adaptive Filter and Neural Network (적응필터 및 신경회로망에 의한 음장의 역 필터링)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • This paper proposes a reverse filtering system of sound field obtaining a state of sound field transmitted from two sounds, using an adaptive filter and neural network. The proposed system uses the reverse filtering method with calculating and renewing a coefficient of a filter, using least mean square. Based on training the neural network, experiments confirm that the proposed system is effective for a simple waveform with non-linear distortion, by using neural network and adaptive filtering method.

Convergence of the Filtered-x Least Mean Square Adaptive Algorithm for Active Noise Control of a Multiple Sinusoids (다중 정현파의 능동소음제어를 위한 Filtered-x 최소 평균제곱 적응 알고리듬 수렴 연구)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Application of the filtered-x Least Mean Square(LMS) adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive controller. In this paper, we derive the filtered-x adaptive noise control algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

Optimization of Channel Prediction Algorithm of Return Link ACM for Satellite Communication (위성통신용 적응형 전송기술 리턴링크 채널예측 알고리즘 최적화)

  • Kim, Hyun-Ho;Kim, Guk-Hyun;Ryu, Joon-Gyu;Hong, Sung-Yong
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.19-23
    • /
    • 2015
  • In this paper, we present the return link ACM method to improve the link availability and system throughput for satellite communication service. Also, we describe the optimization of an algorithm for channel prediction using the LMS (Least Mean Square) adaptive filter and the MODCOD (Modulation & Code rate) decision. The simulation results show that the optimized filter taps and step-size of adaptive filter are 2 and 0.00026, respectively. And also confirms the required SNR margin for minimization of MODCOD decision error is 0.3dB.

Design of an Adaptive Filter for Noise Cancdlation of ECG's (심전도 신호의 잡음 제거를 위한 적응 필터 설계)

  • 이재준;송철규
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.107-114
    • /
    • 1992
  • An adaptive filter for noise cancellation of ECG Is proposed. An adaptive noise canceller using the least mean squares algorithm Is used to reduce unwanted noise. An adaptive filter for nolse cancella lion minimizes the mean-square error between a primary input and a reference input. A primary input is the noisy ECG, and a reference input is a noise that Is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input.

  • PDF

A New Orthogonal Signal Generator with DC Offset Rejection for Single-Phase Phase Locked Loops

  • Huang, Xiaojiang;Dong, Lei;Xiao, Furong;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.310-318
    • /
    • 2016
  • This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop (PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and experimental results demonstrate the feasibility of the proposed AF-SPLL.