• Title/Summary/Keyword: Learning-based game model

Search Result 117, Processing Time 0.034 seconds

Research on AI Painting Generation Technology Based on the [Stable Diffusion]

  • Chenghao Wang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.90-95
    • /
    • 2023
  • With the rapid development of deep learning and artificial intelligence, generative models have achieved remarkable success in the field of image generation. By combining the stable diffusion method with Web UI technology, a novel solution is provided for the application of AI painting generation. The application prospects of this technology are very broad and can be applied to multiple fields, such as digital art, concept design, game development, and more. Furthermore, the platform based on Web UI facilitates user operations, making the technology more easily applicable to practical scenarios. This paper introduces the basic principles of Stable Diffusion Web UI technology. This technique utilizes the stability of diffusion processes to improve the output quality of generative models. By gradually introducing noise during the generation process, the model can generate smoother and more coherent images. Additionally, the analysis of different model types and applications within Stable Diffusion Web UI provides creators with a more comprehensive understanding, offering valuable insights for fields such as artistic creation and design.

IoT Edge Architecture Model to Prevent Blockchain-Based Security Threats (블록체인 기반의 보안 위협을 예방할 수 있는 IoT 엣지 아키텍처 모델)

  • Yoon-Su Jeong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • Over the past few years, IoT edges have begun to emerge based on new low-latency communication protocols such as 5G. However, IoT edges, despite their enormous advantages, pose new complementary threats, requiring new security solutions to address them. In this paper, we propose a cloud environment-based IoT edge architecture model that complements IoT systems. The proposed model acts on machine learning to prevent security threats in advance with network traffic data extracted from IoT edge devices. In addition, the proposed model ensures load and security in the access network (edge) by allocating some of the security data at the local node. The proposed model further reduces the load on the access network (edge) and secures the vulnerable part by allocating some functions of data processing and management to the local node among IoT edge environments. The proposed model virtualizes various IoT functions as a name service, and deploys hardware functions and sufficient computational resources to local nodes as needed.

A Study on the Win-Loss Prediction Analysis of Korean Professional Baseball by Artificial Intelligence Model (인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구)

  • Kim, Tae-Hun;Lim, Seong-Won;Koh, Jin-Gwang;Lee, Jae-Hak
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • In this study, we conducted a study on the win-loss predicton analysis of korean professional baseball by artificial intelligence models. Based on the model, we predicted the winner as well as each team's final rank in the league. Additionally, we developed a website for viewers' understanding. In each game's first, third, and fifth inning, we analyze to select the best model that performs the highest accuracy and minimizes errors. Based on the result, we generate the rankings. We used the predicted data started from May 5, the season's opening day, to August 30, 2020 to generate the rankings. In the games which Kia Tigers did not play, however, we used actual games' results in the data. KNN and AdaBoost selected the most optimized machine learning model. As a result, we observe a decreasing trend of the predicted results' ranking error as the season progresses. The deep learning model recorded 89% of the model accuracy. It provides the same result of decreasing ranking error trends of the predicted results that we observe in the machine learning model. We estimate that this study's result applies to future KBO predictions as well as other fields. We expect broadcasting enhancements by posting the predicted winning percentage per inning which is generated by AI algorism. We expect this will bring new interest to the KBO fans. Furthermore, the prediction generated at each inning would provide insights to teams so that they can analyze data and come up with successful strategies.

Reinforcement Learning Approach to Agents Dynamic Positioning in Robot Soccer Simulation Games

  • Kwon, Ki-Duk;Kim, In-Cheol
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.321-324
    • /
    • 2001
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement Beaming is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement loaming is different from supervised teaming in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement loaming algorithms like Q-learning do not require defining or loaming any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning(AMMQL) as an improvement of the existing Modular Q-Learning(MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.

  • PDF

EcoBlog: 4d Spatial Framework for Ecological Virtual Community (EcoBlog: 생태학적 가상 커뮤니티 구현을 위한 4 차원 공간 프레임워크)

  • Lertlakkhanakul, Jumphon;Bae, Nu-Ri;Choi, Jin-Won;Chun, Chung-Yoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.937-944
    • /
    • 2006
  • Although people's anxiety about the environmental problem has been getting higher, they are not provided good quality of knowledge about the environment. Based on this situation, Ecoblog can be a new type of online community to educate the public in ecological knowledge. Especially, Ecoblog can be utilized as a method of "preventive education", and it will contribute to reduce great amounts of environmental budget to restore contaminated environment to previous condition. Ecoblog also utilizes the concept of blog which user can create and append their site with chosen themes. A weblog or a blog is a non-commercial webpage regularly updated through the use of a blogging software which allows the user to "publish" kinds of amalgamations of text and graphics to the page as posts. The technology offered in Ecoblog is utilizing the concept of 4D place and game metaphor in order to provide users the sense of participation, interaction and immersion among them and the growing community. Thus, it requires applying the CAAD technology by implementing semantically well-defined building data model as a core database to create a 4D virtual community. This research focuses on defining a 4d spatial framework suitable for developing an online ecological community. Through our study, the state-of-the-art of online community has been studied at the first step. Second, the scenario of using EcoBlog described with content, visualization and navigation are defined based on the critical features derived at the first step. Finally, a 4d spatial framework composed of semantic building data model, content and rule database is constructed to propose factors that are necessary to establish an ecological virtual community. In conclusion, our framework could enhance the comprehension and interaction between users and virtual buildings in the ecological community by integrating the concept of game design, 4D CAD and semantic data model. Such framework can be applied to any online community for an educational purpose.

  • PDF

A Study of Artificial Intelligence Learning Model to Support Military Decision Making: Focused on the Wargame Model (전술제대 결심수립 지원 인공지능 학습방법론 연구: 워게임 모델을 중심으로)

  • Kim, Jun-Sung;Kim, Young-Soo;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.

Efficient Approximation of State Space for Reinforcement Learning Using Complex Network Models (복잡계망 모델을 사용한 강화 학습 상태 공간의 효율적인 근사)

  • Yi, Seung-Joon;Eom, Jae-Hong;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.479-490
    • /
    • 2009
  • A number of temporal abstraction approaches have been suggested so far to handle the high computational complexity of Markov decision problems (MDPs). Although the structure of temporal abstraction can significantly affect the efficiency of solving the MDP, to our knowledge none of current temporal abstraction approaches explicitly consider the relationship between topology and efficiency. In this paper, we first show that a topological measurement from complex network literature, mean geodesic distance, can reflect the efficiency of solving MDP. Based on this, we build an incremental method to systematically build temporal abstractions using a network model that guarantees a small mean geodesic distance. We test our algorithm on a realistic 3D game environment, and experimental results show that our model has subpolynomial growth of mean geodesic distance according to problem size, which enables efficient solving of resulting MDP.

Overfitting Reduction of Intelligence Web Search based on Enforcement Learning (강화학습에 기초한 지능형 웹 검색의 과잉적합 감소방안)

  • Han, Song-Yi;Jung, Yong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.25-30
    • /
    • 2009
  • Recent days intellectual systems using reinforcement learning are being researched at various fields of game and web searching applications. A good training models are called to be fitted with trainning data and also classified with new records accurately. A overfitted model with training data may possibly bring the unfavored fallacy of hasty generalization. But it would be unavoidable in actual world. The entropy and mutation model are suggested to reduce the overfitting problems on this paper. It explains variation of entropy and artificial development of entropy in datamining, which can tell development of mutation to survive in nature world. Periodical generation of maximum entropy are introduced in this paper to reduce overfitting. Maximum entropy model can be considered as a periodical generalization in intensified process of intellectual web searching.

  • PDF

Synthetic Data Generation with Unity 3D and Unreal Engine for Construction Hazard Scenarios: A Comparative Analysis

  • Aqsa Sabir;Rahat Hussain;Akeem Pedro;Mehrtash Soltani;Dongmin Lee;Chansik Park;Jae- Ho Pyeon
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1286-1288
    • /
    • 2024
  • The construction industry, known for its inherent risks and multiple hazards, necessitates effective solutions for hazard identification and mitigation [1]. To address this need, the implementation of machine learning models specializing in object detection has become increasingly important because this technological approach plays a crucial role in augmenting worker safety by proactively recognizing potential dangers on construction sites [2], [3]. However, the challenge in training these models lies in obtaining accurately labeled datasets, as conventional methods require labor-intensive labeling or costly measurements [4]. To circumvent these challenges, synthetic data generation (SDG) has emerged as a key method for creating realistic and diverse training scenarios [5], [6]. The paper reviews the evolution of synthetic data generation tools, highlighting the shift from earlier solutions like Synthpop and Data Synthesizer to advanced game engines[7]. Among the various gaming platforms, Unity 3D and Unreal Engine stand out due to their advanced capabilities in replicating realistic construction hazard environments [8], [9]. Comparing Unity 3D and Unreal Engine is crucial for evaluating their effectiveness in SDG, aiding developers in selecting the appropriate platform for their needs. For this purpose, this paper conducts a comparative analysis of both engines assessing their ability to create high-fidelity interactive environments. To thoroughly evaluate the suitability of these engines for generating synthetic data in construction site simulations, the focus relies on graphical realism, developer-friendliness, and user interaction capabilities. This evaluation considers these key aspects as they are essential for replicating realistic construction sites, ensuring both high visual fidelity and ease of use for developers. Firstly, graphical realism is crucial for training ML models to recognize the nuanced nature of construction environments. In this aspect, Unreal Engine stands out with its superior graphics quality compared to Unity 3D which typically considered to have less graphical prowess [10]. Secondly, developer-friendliness is vital for those generating synthetic data. Research indicates that Unity 3D is praised for its user-friendly interface and the use of C# scripting, which is widely used in educational settings, making it a popular choice for those new to game development or synthetic data generation. Whereas Unreal Engine, while offering powerful capabilities in terms of realistic graphics, is often viewed as more complex due to its use of C++ scripting and the blueprint system. While the blueprint system is a visual scripting tool that does not require traditional coding, it can be intricate and may present a steeper learning curve, especially for those without prior experience in game development [11]. Lastly, regarding user interaction capabilities, Unity 3D is known for its intuitive interface and versatility, particularly in VR/AR development for various skill levels. In contrast, Unreal Engine, with its advanced graphics and blueprint scripting, is better suited for creating high-end, immersive experiences [12]. Based on current insights, this comparative analysis underscores the user-friendly interface and adaptability of Unity 3D, featuring a built-in perception package that facilitates automatic labeling for SDG [13]. This functionality enhances accessibility and simplifies the SDG process for users. Conversely, Unreal Engine is distinguished by its advanced graphics and realistic rendering capabilities. It offers plugins like EasySynth (which does not provide automatic labeling) and NDDS for SDG [14], [15]. The development complexity associated with Unreal Engine presents challenges for novice users, whereas the more approachable platform of Unity 3D is advantageous for beginners. This research provides an in-depth review of the latest advancements in SDG, shedding light on potential future research and development directions. The study concludes that the integration of such game engines in ML model training markedly enhances hazard recognition and decision-making skills among construction professionals, thereby significantly advancing data acquisition for machine learning in construction safety monitoring.

Method and Case Study of Decision Tree for Content Design Education (콘텐츠 디자인교육을 위한 의사 결정 트리 활용 방법과 사례연구)

  • Kim, Sungkon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • In order to overcome the students' lack of information and experience, we developed a content planning tree that utilizes a decision tree. The content planning tree consists of a tree trunk creation step in which students select a theme and a story to develop, a parent branch generation step for selecting a category that can be developed based on the story, a child branch generation step for selecting the interesting "effect" method of producing the content effectively, a leaf generation step for selecting a multimedia expression 'element' to be visualized. The educational model was applied to game planning design and information visualization lectures, and provides examples of the categories, effects, and elements used in each lecture. The model was used for 145 team projects and the efficiency was confirmed by a step-by-step learning process.