• Title/Summary/Keyword: Learning with AI

Search Result 918, Processing Time 0.029 seconds

Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy

  • Chang Bong Yang;Sang Hoon Kim;Yun Jeong Lim
    • Clinical Endoscopy
    • /
    • v.55 no.5
    • /
    • pp.594-604
    • /
    • 2022
  • Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

A Study on Impact of Deep Learning on Korean Economic Growth Factor

  • Dong Hwa Kim;Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.90-99
    • /
    • 2023
  • This paper deals with studying strategy about impact of deep learning (DL) on the factor of Korean economic growth. To study classification of impact factors of Korean economic growth, we suggest dynamic equation of microeconomy and study methods on economic growth impact of deep learning. Next step is to suggest DL model to dynamic equation with Korean economy data with growth related factors to classify what factor is import and dominant factors to build policy and education. DL gives an influence in many areas because it can be implemented with ease as just normal editing works and speak including code development by using huge data. Currently, young generations will take a big impact on their job selection because generative AI can do well as much as humans can do it everywhere. Therefore, policy and education methods should be rearranged as new paradigm. However, government and officers do not understand well how it is serious in policy and education. This paper provides method of policy and education for AI education including generative AI through analysing many papers and reports, and experience.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.

Fitness Measurement system using deep learning-based pose recognition (딥러닝 기반 포즈인식을 이용한 체력측정 시스템)

  • Kim, Hyeong-gyun;Hong, Ho-Pyo;Kim, Yong-ho
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • The proposed system is composed of two parts, an AI physical fitness measurement part and an AI physical fitness management part. In the AI fitness measurement part, a guide to physical fitness measurement and accurate calculation of the measured value are performed through deep learning-based pose recognition. Based on these measurements, the AI fitness management part designs personalized exercise programs and provides them to dedicated smart applications. To guide the measurement posture, the posture of the subject to be measured is photographed through a webcam and the skeleton line is extracted. Next, the skeletal line of the learned preparation posture is compared with the extracted skeletal line to determine whether or not it is normal, and voice guidance is provided to maintain the normal posture.

A Case Study of Creative Art Based on AI Generation Technology

  • Qianqian Jiang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • In recent years, with the breakthrough of Artificial Intelligence (AI) technology in deep learning algorithms such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE), AI generation technology has rapidly expanded in various sub-sectors in the art field. 2022 as the explosive year of AI-generated art, especially in the creation of AI-generated art creative design, many excellent works have been born, which has improved the work efficiency of art design. This study analyzed the application design characteristics of AI generation technology in two sub fields of artistic creative design of AI painting and AI animation production , and compares the differences between traditional painting and AI painting in the field of painting. Through the research of this paper, the advantages and problems in the process of AI creative design are summarized. Although AI art designs are affected by technical limitations, there are still flaws in artworks and practical problems such as copyright and income, but it provides a strong technical guarantee in the expansion of subdivisions of artistic innovation and technology integration, and has extremely high research value.

A Design of AI Cloud Platform for Safety Management on High-risk Environment (고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계)

  • Ki-Bong, Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.01-09
    • /
    • 2022
  • Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

Case Analysis on AI-Based Learning Assistance Systems (인공지능 기반 학습 지원 시스템에 관한 사례 분석)

  • Chee, Hyunkyung;Kim, Minji;Lee, Gayoung;Huh, Sunyoung;Kim, Myung sun
    • Journal of Engineering Education Research
    • /
    • v.27 no.4
    • /
    • pp.3-11
    • /
    • 2024
  • This study classified domestic and international systems by type, presenting their key features and examples, with the aim of outlining future directions for system development and research. AI-based learning assistance systems can be categorized into instructional-learning evaluation types and academic recommendation types, depending on their purpose. Instructional-learning evaluation types measure learners' levels through initial diagnostic assessments, provide customized learning, and offer adaptive feedback visualized based on learners' misconceptions identified through learning data. Academic recommendation types provide personalized academic pathways and a variety of information and functions to assist with overall school life, based on the big data held by schools. Based on these characteristics, future system development should clearly define the development purpose from the planning stage, considering data ethics and stability, and should not only approach from a technological perspective but also sufficiently reflect educational contexts.

From Masked Reconstructions to Disease Diagnostics: A Vision Transformer Approach for Fundus Images (마스크된 복원에서 질병 진단까지: 안저 영상을 위한 비전 트랜스포머 접근법)

  • Toan Duc Nguyen;Gyurin Byun;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.557-560
    • /
    • 2023
  • In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.