• 제목/요약/키워드: Learning support

검색결과 3,000건 처리시간 0.03초

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템 (Video-based Inventory Management and Theft Prevention for Unmanned Stores)

  • 이수진;문지영;박해인;강지헌
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.77-89
    • /
    • 2024
  • 본 논문에서는 중소형 매장에서 판매 상품 진열대를 모니터링할 수 있는 소형 카메라를 이용해 진열 상품에 대한 재고 관리 및 도난 방지 기능을 제공할 수 있는 무인 매장 관리 시스템을 제시한다. 이 시스템은 객체 인식, 실시간 통신, 보안 관리, 출입 관리, 그리고 모바일 인증을 종합적으로 통합한 서비스 솔루션이다. 제안 시스템은 소형 카메라를 통해 실시간으로 촬영되고 있는 영상을 커스텀 YOLOv5-x 모델을 활용하여 진열대의 물체를 인식하고 수량을 실시간 측정하며, 라즈베리파이를 통해 서버와의 실시간 데이터 통신을 지원한다. 또한, 데이터베이스 내 객체 수량과 객체 인식 결과를 비교하여 도난 의심 상황을 탐지하고 도난 발생 시점의 매장 영상을 제공한다. 제안된 무인 매장 솔루션은 중소형 무인 매장 운영의 효율성을 향상시키고 도난을 대응하는데 기여할 수 있을 것으로 기대된다.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

Optimizing Innovative Tools for Dissemination of Information in Nigerian Academic Libraries During Post-COVID Era

  • Halimah Odunayo AMUDA;Ayotola Olubunmi ONANUGA
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제14권1호
    • /
    • pp.19-31
    • /
    • 2024
  • In order to support the mission of the institution in which they are attached, academic libraries provide services in both manual and digital but COVID -19 pandemic that spanned between March and September, 2020 has changed the scenario. With particular reference to Nigeria, about 249,606 cases were confirmed and in order to curb the scourge of this deadly disease, physical academic activities were prevented by Nigeria Centre for Disease Control (NCDC). With this development, innovative tools became indispensable tools for successful delivery of library services in Nigerian academic libraries. Whether or not these tools are still in use for reformation of library service during post- Covid era remains unclear, hence, need for this study. This study examined librarians' use of innovative tools for information dissemination in Nigerian academic libraries during the post-Covid era using a descriptive survey design. Data were obtained both in quantitative and qualitative formats from one hundred and forty-four librarians as respondents. A total enumeration sampling technique was adopted because the population was minimal. Findings of the study revealed that innovative tools such as videoconferencing, WhatsApp, teleconferencing, Facebook, LinkedIn, and web-based learning applications are still in use by librarians for the dissemination of information during the post-Covid era. These tools are useful and beneficial to librarians during the post-COVID era, as they facilitate easy participation and engagement of library users in various discussions. Inadequate funding and lack of advanced technology skills were also identified as major impediments to the successful use of innovative tools for information dissemination. As a result, it was suggested that academic libraries throughout Nigeria prioritize staff training on the necessary digital skills needed to cope in this advanced technology era.

Improving Remedial Measures from Incident Investigations: A Study Across Ghanaian Mines

  • Theophilus Joe-Asare;Eric Stemn
    • Safety and Health at Work
    • /
    • 제15권1호
    • /
    • pp.24-32
    • /
    • 2024
  • Background: Learning from incidents for accident prevention is a two-stage process, involving the investigation of past accidents to identify the causal factors, followed by the identification and implementation of remedial measures to address the identified causal factors. The focus of past research has been on the identification of causal factors, with limited focus on the identification and implementation of remedial measures. This research begins to contribute to this gap. The motivation for the research is twofold. First, previous analyses show the recurring nature of accidents within the Ghanaian mining industry, and the causal factors also remain the same. This raises questions on the nature and effectiveness of remedial measures identified to address the causes of past accidents. Secondly, without identifying and implementing remedial measures, the full benefits of accident investigations will not be achieved. Hence, this study aims to assess the nature of remedial measures proposed to address investigation causal factors. Method: The study adopted SMARTER from business studies with the addition of HMW (H - Hierarchical, M - Mapping, and W - Weighting of causal factors) to analyse the recommendations from 500 individual investigation reports across seven different mines in Ghana. Results: The individual and the work environment (79%) were mostly the focused during the search for causes, with limited focus on organisational factors (21%). Forty eight percentage of the recommendations were administrative, focussing on fixing the problem in the immediate affected area or department of the victim(s). Most recommendations (70.4%) were support activities that only enhance the effectiveness of control but do not prevent/mitigate the failure directly. Across all the mines, there was no focus on evaluating the performance of remedial measures after their implementation. Conclusion: Identifying sharp-end causes leads to proposing weak recommendations which fail to address latent organisational conditions. The study proposed a guide for effective planning and implementation of remedial actions.

인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구 (Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices)

  • 위리;김남호
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.9-17
    • /
    • 2024
  • 본 연구는 농산물의 품질, 수익 및 의사결정 효율성을 향상시키기 위한 통합적인 농업 유통망 관리시스템을 개발하는 데 목적이 있다. 우리는 YOLOX 객체 탐지 알고리즘을 기반으로 한 농작물 성숙도 체크와 Prophet 모델을 기반으로 한 시장 가격 예측이라는 두 가지 핵심 기술을 채택하였다. 객체 탐지 모델을 훈련함으로써, 다양한 성숙도 단계의 농작물을 정확하게 식별할 수 있게 되어 출하 시기를 최적화할 수 있었다. 동시에, 과거 시장 가격 데이터를 수집하고 Prophet 모델을 사용하여 가격을 예측함으로써, 출하시기 결정권자들에게 신뢰할 수 있는 가격 추세 정보를 제공하였다. 연구 결과에 따르면, 휴일 요소를 고려한 모델의 성능이 그렇지 않은 모델보다 두드러지게 우수하다는 것이 밝혀져서 휴일이 가격에 미치는 영향이 강함을 증명하였다. 이 시스템은 농민 및 농산물 유통 관리자에게 강력한 도구 및 의사결정 지원을 제공하여, 다양한 계절과 휴일 기간 동안 현명한 의사결정을 내릴 수 있게 도와준다. 아울러, 농산물 유통망을 최적화하고 농산물의 품질과 수익을 향상시킬 수 있다.

지능정보사회 노인층의 디지털 정보격차와 과제 (The Digital Divide and Challenges on the Elderly in Intelligence Information Society)

  • 박노민
    • 디지털정책학회지
    • /
    • 제3권1호
    • /
    • pp.11-20
    • /
    • 2024
  • 시대적 디지털 환경변화를 반영하는 지능정보사회는 개인적인 삶의 변화 가능성으로 기대되는 반면, 지능정보기술에 익숙하지 않은 정보취약계층의 디지털 격차는 활용 불가능의 불편함을 넘어 지능정보사회에서 누릴 수 있는 사회적·경제적 불평등이 야기되는 현실이다. 본 연구는 지능정보사회의 디지털 포용 실현을 위한 노인 미디어교육 분야의 과제를 도출하는 데 목적이 있다. 이를 위해 '제6차 국가정보화 기본계획(2018~2022)'과 '2022 교육정보화백서(2022)'를 통해 지능정보사회와 관련되는 국가정보화 비전, 목표, 전략 및 과제를 살펴보았으며, '2022년 디지털 정보격차 실태조사' 결과를 통해 취약계층으로 분류된 노인층의 디지털 격차 현황을 통하여 디지털정보화 역량(54.5%)과 디지털 정보화 활용수준(72.6%)은 낮은 것으로 파악하였다. 지능정보사회에서 노인층의 디지털 정보격차를 완화하기 위해서 노인 미디어교육 분야에서는 지능정보기술을 활용한 지능형 미디어교육 서비스 개발, 늘배움 온라인서비스 채널을 통한 노인 미디어교육 서비스 제공, 노인층을 위한 디지털 지능형 미디어 교육 지원 등이 필요할 것으로 여겨진다.

영작문 도구로서의 인공지능번역 활용에 대한 초등예비교사의 인식연구 (The Perception of Pre-service English Teachers' use of AI Translation Tools in EFL Writing)

  • 양재석
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.121-128
    • /
    • 2024
  • 최근 AI기반 온라인 번역 도구의 활용도가 높아짐에 따라 이에 대한 교육적 활용 방안 및 효과에 대한 관심이 높아지고 있다. 본 연구에서는 초등 예비교사를 30명을 대상으로 AI기반 온라인 번역도구를 활용한 영작문 과업을 수행하고 영어 글쓰기 능력에 미치는 영향과 실제적 경험을 기반으로 AI번역도구에 대한 활용 가능성, 교육적 활용도 및 장단점 등에 대한 인식을 살펴보았다. 작문시험, 설문조사와 인터뷰를 통해 수집된 자료를 바탕으로 분석한 결과, 영어 글쓰기의 완성도 및 충실도에 있어서 유의미한 증가를 보였으며, 학습자들의 인식에서도 번역도구의 사용은 학습에 대한 즉각적인 지원과 편의성을 제공, 효과적인 도구활용을 위한 교육적 전략의 필요성에 대한 긍정적 인식도 나타났으나, 번역의 완성도나 정확성을 높이기 위한 방법, 도구 활용에 대한 과용과 의존성에 대한 우려도 제기되었다. 번역도구의 효과적 활용을 위해서 교육적 전략이나 교사의 역할의 중요한 것으로 나타났다.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • 한국간담췌외과학회지
    • /
    • 제28권1호
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.

드론과 인공지능을 활용한 실종자 탐색에 관한 연구 (A Study on detection of missing person using DRONE and AI)

  • 김경목;전호범;임건선
    • 보건의료생명과학 논문지
    • /
    • 제10권2호
    • /
    • pp.361-367
    • /
    • 2022
  • 본 연구는 4차산업혁명 시대를 대표하는 인공지능을 드론에 탑재하여 실시간 이미지 정보를 획득하고 건강상, 또는 실신 등 응급을 요 하는 사람을 탐색함으로써 사각지대를 최소화하고 탐색의 효율성을 높이는데 그 목적이 있다. 본 연구는 드론에 영상정보 획득 장치를 탑재하고 미디어 서버에 전송 후 프레임 단위의 인공지능 학습 알고리즘을 적용하여 사람 인식 결과를 분석 후 해당 GPS 정보를 획득하는 절차로 진행된다. 최근 소개된 여러 인공지능 알고리즘 중에서 대표되는 YOLO 알고리즘을 적용하여 마네킹 또는 실제 이미지를 학습함으로써 신뢰도 높은 실험 결과를 보였으며 드론의 활용범위가 확대됨에 따라 인간의 접근 사각지대에서 그 역할이 확대될 것으로 기대된다. 논문의 구성은 임무 수행을 위한 드론의 사양을 소개하고 인공지능의 개념 및 활용 방법, 실제 드론 비행을 통한 이미지 획득 및 결과 분석 그리고 향후 활용범위로 기술하였다.