International Journal of Computer Science & Network Security
/
제24권2호
/
pp.101-112
/
2024
Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.
본 논문에서는 중소형 매장에서 판매 상품 진열대를 모니터링할 수 있는 소형 카메라를 이용해 진열 상품에 대한 재고 관리 및 도난 방지 기능을 제공할 수 있는 무인 매장 관리 시스템을 제시한다. 이 시스템은 객체 인식, 실시간 통신, 보안 관리, 출입 관리, 그리고 모바일 인증을 종합적으로 통합한 서비스 솔루션이다. 제안 시스템은 소형 카메라를 통해 실시간으로 촬영되고 있는 영상을 커스텀 YOLOv5-x 모델을 활용하여 진열대의 물체를 인식하고 수량을 실시간 측정하며, 라즈베리파이를 통해 서버와의 실시간 데이터 통신을 지원한다. 또한, 데이터베이스 내 객체 수량과 객체 인식 결과를 비교하여 도난 의심 상황을 탐지하고 도난 발생 시점의 매장 영상을 제공한다. 제안된 무인 매장 솔루션은 중소형 무인 매장 운영의 효율성을 향상시키고 도난을 대응하는데 기여할 수 있을 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.456-477
/
2024
With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.
International Journal of Knowledge Content Development & Technology
/
제14권1호
/
pp.19-31
/
2024
In order to support the mission of the institution in which they are attached, academic libraries provide services in both manual and digital but COVID -19 pandemic that spanned between March and September, 2020 has changed the scenario. With particular reference to Nigeria, about 249,606 cases were confirmed and in order to curb the scourge of this deadly disease, physical academic activities were prevented by Nigeria Centre for Disease Control (NCDC). With this development, innovative tools became indispensable tools for successful delivery of library services in Nigerian academic libraries. Whether or not these tools are still in use for reformation of library service during post- Covid era remains unclear, hence, need for this study. This study examined librarians' use of innovative tools for information dissemination in Nigerian academic libraries during the post-Covid era using a descriptive survey design. Data were obtained both in quantitative and qualitative formats from one hundred and forty-four librarians as respondents. A total enumeration sampling technique was adopted because the population was minimal. Findings of the study revealed that innovative tools such as videoconferencing, WhatsApp, teleconferencing, Facebook, LinkedIn, and web-based learning applications are still in use by librarians for the dissemination of information during the post-Covid era. These tools are useful and beneficial to librarians during the post-COVID era, as they facilitate easy participation and engagement of library users in various discussions. Inadequate funding and lack of advanced technology skills were also identified as major impediments to the successful use of innovative tools for information dissemination. As a result, it was suggested that academic libraries throughout Nigeria prioritize staff training on the necessary digital skills needed to cope in this advanced technology era.
Background: Learning from incidents for accident prevention is a two-stage process, involving the investigation of past accidents to identify the causal factors, followed by the identification and implementation of remedial measures to address the identified causal factors. The focus of past research has been on the identification of causal factors, with limited focus on the identification and implementation of remedial measures. This research begins to contribute to this gap. The motivation for the research is twofold. First, previous analyses show the recurring nature of accidents within the Ghanaian mining industry, and the causal factors also remain the same. This raises questions on the nature and effectiveness of remedial measures identified to address the causes of past accidents. Secondly, without identifying and implementing remedial measures, the full benefits of accident investigations will not be achieved. Hence, this study aims to assess the nature of remedial measures proposed to address investigation causal factors. Method: The study adopted SMARTER from business studies with the addition of HMW (H - Hierarchical, M - Mapping, and W - Weighting of causal factors) to analyse the recommendations from 500 individual investigation reports across seven different mines in Ghana. Results: The individual and the work environment (79%) were mostly the focused during the search for causes, with limited focus on organisational factors (21%). Forty eight percentage of the recommendations were administrative, focussing on fixing the problem in the immediate affected area or department of the victim(s). Most recommendations (70.4%) were support activities that only enhance the effectiveness of control but do not prevent/mitigate the failure directly. Across all the mines, there was no focus on evaluating the performance of remedial measures after their implementation. Conclusion: Identifying sharp-end causes leads to proposing weak recommendations which fail to address latent organisational conditions. The study proposed a guide for effective planning and implementation of remedial actions.
본 연구는 농산물의 품질, 수익 및 의사결정 효율성을 향상시키기 위한 통합적인 농업 유통망 관리시스템을 개발하는 데 목적이 있다. 우리는 YOLOX 객체 탐지 알고리즘을 기반으로 한 농작물 성숙도 체크와 Prophet 모델을 기반으로 한 시장 가격 예측이라는 두 가지 핵심 기술을 채택하였다. 객체 탐지 모델을 훈련함으로써, 다양한 성숙도 단계의 농작물을 정확하게 식별할 수 있게 되어 출하 시기를 최적화할 수 있었다. 동시에, 과거 시장 가격 데이터를 수집하고 Prophet 모델을 사용하여 가격을 예측함으로써, 출하시기 결정권자들에게 신뢰할 수 있는 가격 추세 정보를 제공하였다. 연구 결과에 따르면, 휴일 요소를 고려한 모델의 성능이 그렇지 않은 모델보다 두드러지게 우수하다는 것이 밝혀져서 휴일이 가격에 미치는 영향이 강함을 증명하였다. 이 시스템은 농민 및 농산물 유통 관리자에게 강력한 도구 및 의사결정 지원을 제공하여, 다양한 계절과 휴일 기간 동안 현명한 의사결정을 내릴 수 있게 도와준다. 아울러, 농산물 유통망을 최적화하고 농산물의 품질과 수익을 향상시킬 수 있다.
시대적 디지털 환경변화를 반영하는 지능정보사회는 개인적인 삶의 변화 가능성으로 기대되는 반면, 지능정보기술에 익숙하지 않은 정보취약계층의 디지털 격차는 활용 불가능의 불편함을 넘어 지능정보사회에서 누릴 수 있는 사회적·경제적 불평등이 야기되는 현실이다. 본 연구는 지능정보사회의 디지털 포용 실현을 위한 노인 미디어교육 분야의 과제를 도출하는 데 목적이 있다. 이를 위해 '제6차 국가정보화 기본계획(2018~2022)'과 '2022 교육정보화백서(2022)'를 통해 지능정보사회와 관련되는 국가정보화 비전, 목표, 전략 및 과제를 살펴보았으며, '2022년 디지털 정보격차 실태조사' 결과를 통해 취약계층으로 분류된 노인층의 디지털 격차 현황을 통하여 디지털정보화 역량(54.5%)과 디지털 정보화 활용수준(72.6%)은 낮은 것으로 파악하였다. 지능정보사회에서 노인층의 디지털 정보격차를 완화하기 위해서 노인 미디어교육 분야에서는 지능정보기술을 활용한 지능형 미디어교육 서비스 개발, 늘배움 온라인서비스 채널을 통한 노인 미디어교육 서비스 제공, 노인층을 위한 디지털 지능형 미디어 교육 지원 등이 필요할 것으로 여겨진다.
최근 AI기반 온라인 번역 도구의 활용도가 높아짐에 따라 이에 대한 교육적 활용 방안 및 효과에 대한 관심이 높아지고 있다. 본 연구에서는 초등 예비교사를 30명을 대상으로 AI기반 온라인 번역도구를 활용한 영작문 과업을 수행하고 영어 글쓰기 능력에 미치는 영향과 실제적 경험을 기반으로 AI번역도구에 대한 활용 가능성, 교육적 활용도 및 장단점 등에 대한 인식을 살펴보았다. 작문시험, 설문조사와 인터뷰를 통해 수집된 자료를 바탕으로 분석한 결과, 영어 글쓰기의 완성도 및 충실도에 있어서 유의미한 증가를 보였으며, 학습자들의 인식에서도 번역도구의 사용은 학습에 대한 즉각적인 지원과 편의성을 제공, 효과적인 도구활용을 위한 교육적 전략의 필요성에 대한 긍정적 인식도 나타났으나, 번역의 완성도나 정확성을 높이기 위한 방법, 도구 활용에 대한 과용과 의존성에 대한 우려도 제기되었다. 번역도구의 효과적 활용을 위해서 교육적 전략이나 교사의 역할의 중요한 것으로 나타났다.
Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
한국간담췌외과학회지
/
제28권1호
/
pp.14-24
/
2024
This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.
본 연구는 4차산업혁명 시대를 대표하는 인공지능을 드론에 탑재하여 실시간 이미지 정보를 획득하고 건강상, 또는 실신 등 응급을 요 하는 사람을 탐색함으로써 사각지대를 최소화하고 탐색의 효율성을 높이는데 그 목적이 있다. 본 연구는 드론에 영상정보 획득 장치를 탑재하고 미디어 서버에 전송 후 프레임 단위의 인공지능 학습 알고리즘을 적용하여 사람 인식 결과를 분석 후 해당 GPS 정보를 획득하는 절차로 진행된다. 최근 소개된 여러 인공지능 알고리즘 중에서 대표되는 YOLO 알고리즘을 적용하여 마네킹 또는 실제 이미지를 학습함으로써 신뢰도 높은 실험 결과를 보였으며 드론의 활용범위가 확대됨에 따라 인간의 접근 사각지대에서 그 역할이 확대될 것으로 기대된다. 논문의 구성은 임무 수행을 위한 드론의 사양을 소개하고 인공지능의 개념 및 활용 방법, 실제 드론 비행을 통한 이미지 획득 및 결과 분석 그리고 향후 활용범위로 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.