• Title/Summary/Keyword: Learning rates

Search Result 499, Processing Time 0.031 seconds

Optical Implementation of Single Layer Neural Networks Using Diffraction Grating (회절격자를 이용한 광학적 단층 인식자의 구현)

  • 이재명;박성균;임종태;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.934-940
    • /
    • 1991
  • A modified quantizing method is introduced to teach single layer learning algorithm, which is implemented optically. The proposed optical system consists of input masks, holographic diffraction grating. LCD and CCD camera. The 2 dimensional interconnections between input neurons and output neurons are realized using holographic phase grating, which is fabricated for equal intensity distribution of diffraction orders. The two gray levels of LCD act as binary weights for each interconnection. The weights are compensated according to the learning algorithm in which the amount of weights to be compensated is determined by comparing the output patterns with target patterns. The learning process is iterated until the predetermined conditions are satisfied. Optical experiments are performed for two learning rates, 0.5 and 0.9 and the experimental results show that the proposed system is useful for optical neural networks.

  • PDF

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

Two Stage Deep Learning Based Stacked Ensemble Model for Web Application Security

  • Sevri, Mehmet;Karacan, Hacer
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.632-657
    • /
    • 2022
  • Detecting web attacks is a major challenge, and it is observed that the use of simple models leads to low sensitivity or high false positive problems. In this study, we aim to develop a robust two-stage deep learning based stacked ensemble web application firewall. Normal and abnormal classification is carried out in the first stage of the proposed WAF model. The classification process of the types of abnormal traffics is postponed to the second stage and carried out using an integrated stacked ensemble model. By this way, clients' requests can be served without time delay, and attack types can be detected with high sensitivity. In addition to the high accuracy of the proposed model, by using the statistical similarity and diversity analyses in the study, high generalization for the ensemble model is achieved. Within the study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-HTTP is created in accordance with the real-world situations. The performance of the proposed WAF model is compared to state-of-the-art deep learning models and previous studies using the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.

Fuzzy Learning Rule Using the Distance between Datum and the Centroids of Clusters (데이터와 클러스터들의 대표값들 사이의 거리를 이용한 퍼지 학습법칙)

  • Kim, Yong-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.301-304
    • /
    • 2007
  • 학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클러스터들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클러스터들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클러스터의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.

  • PDF

Binary clustering network for recognition of keywords in continuous speech (연속음성중 키워드(Keyword) 인식을 위한 Binary Clustering Network)

  • 최관선;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.870-876
    • /
    • 1993
  • This paper presents a binary clustering network (BCN) and a heuristic algorithm to detect pitch for recognition of keywords in continuous speech. In order to classify nonlinear patterns, BCN separates patterns into binary clusters hierarchically and links same patterns at root level by using the supervised learning and the unsupervised learning. BCN has many desirable properties such as flexibility of dynamic structure, high classification accuracy, short learning time, and short recall time. Pitch Detection algorithm is a heuristic model that can solve the difficulties such as scaling invariance, time warping, time-shift invariance, and redundance. This recognition algorithm has shown recognition rates as high as 95% for speaker-dependent as well as multispeaker-dependent tests.

  • PDF

An Approximate DRAM Architecture for Energy-efficient Deep Learning

  • Nguyen, Duy Thanh;Chang, Ik-Joon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2020
  • We present an approximate DRAM architecture for energy-efficient deep learning. Our key premise is that by bounding memory errors to non-critical information, we can significantly reduce DRAM refresh energy without compromising recognition accuracy of deep neural networks. To validate the key premise, we make extensive Monte-Carlo simulations for several well-known convolutional neural networks such as LeNet, ConvNet and AlexNet with the input of MINIST, CIFAR-10, and ImageNet, respectively. We assume that the highest-order 8-bits (in single precision) and 4-bits (in half precision) are protected from retention errors under the proposed architecture and then, randomly inject bit-errors to unprotected bits with various bit-error-rates. Here, recognition accuracies of the above convolutional neural networks are successfully maintained up to the 10-5-order bit-error-rate. We simulate DRAM energy during inference of the above convolutional neural networks, where the proposed architecture shows the possibility of considerable energy saving up to 10 ~ 37.5% of total DRAM energy.

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

A Fall Detection Technique using Features from Multiple Sliding Windows

  • Pant, Sudarshan;Kim, Jinsoo;Lee, Sangdon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.79-89
    • /
    • 2018
  • In recent years, falls among elderly people have gained serious attention as a major cause of injuries. Falls often lead to fatal consequences due to lack of prompt response and rescue. Therefore, a more accurate fall detection system and an effective feature extraction technique are required to prevent and reduce the risk of such incidents. In this paper, we proposed an efficient feature extraction technique based on multiple sliding windows and validated it through a series of experiments using supervised learning algorithms. The experiments were conducted using the public datasets obtained from tri-axial accelerometers. The results depicted that extraction of the feature from adjacent sliding windows led to high accuracy in supervised machine learning-based fall detection. Also, the experiments conducted in this study suggested that the best accuracy can be achieved by keeping the window size as small as 2 seconds. With the kNN classifier and dataset from wearable sensors, the experiments achieved accuracy rates of 94%.

Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks (CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.