• Title/Summary/Keyword: Learning environment

Search Result 4,460, Processing Time 0.034 seconds

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

Development and Application of Earth Science Module Based on Earth System (지구계 주제 중심의 지구과학 모듈 개발 및 적용)

  • Lee, Hyo-Nyong;Kwon, Young-Ryun
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.175-188
    • /
    • 2008
  • The purposes of this study were to develop an Earth systems-based earth science module and to investigate the effects of field application. The module was applied to two classrooms of a total of 76 second-year high schoolers, in order to investigate the effectiveness of the developed module. Data was collected from observations in earth science classrooms, interviews, and questionnaires. The findings were as follows. First, the Earth systems-based earth science module was designed to be associated with the aims of the national Earth Science Curriculum and to improve students' Earth science literacy. The module was composed of two sections for a total of seven instructional hours for high schoolers. The former sections included the understanding of the Earth system through the understanding of each individual component of the system, its characteristics, properties and structure. The latter section of the module, consisting of 4 instructional hours, dealt with earth environmental problems, the understanding of subsystems changing through natural processes and cycles, and human interactions and their effects upon Earth systems. Second, the module was helpful in learning about the importance of understanding the interactions between water, rock, air, and life when it comes to understanding the Earth system, its components, characteristics, and properties. The Earth systems-based earth science module is a valuable and helpful instructional material which can enhance students' understanding of Earth systems and earth science literacy.

A Research Regarding the Application and Development of Web Contents Data in Home Economics (가정과 수업의 웹 콘텐츠 자료 활용 및 개발에 관한 연구)

  • Kim Mi-Suk;Wee Eun-Hah
    • Journal of Korean Home Economics Education Association
    • /
    • v.18 no.1 s.39
    • /
    • pp.49-64
    • /
    • 2006
  • The objective of this research is to see the current status of application and development of web contents data, and to suggest the way to improve the application and development of web contents data in home economics classes in middle schools. The respondents of the research were 312 middle school home economics teachers from all over the nation, and the tool was a questionnaire which consist of 22 questions about general status of the person who was answering and their recognitions and demands on the application and development of the web contents data. The major findings were as follows : 1) 88.5% of the sample responded that they accurately grasped a meaning of a class employing web contents data, and as for effects on preparation of professional study. 2) Most of the teachers were making good use of materials from the web in their classes. They responded that it maximized the efficiency of students' learning. Some didn't use the web contents in their classes. The reasons why the web contents data usage had been low were that the classrooms were not equipped properly (43.2%) and it took long time to create web contests (37.8%). 3) Kinds of web contents data that showed the most amount of usage were the presentations (48.4%), multi-media teaching materials(23.7%), and moving pictures(19.9%). 4) Teaches wanted to improve these particular materials among the web contents: family life and home, administration and environment of resources, and clothing preparation and administration. As for the lessons, teachers wanted developments of contents of lessons, generating motives, and evaluation to be by individual teachers or curriculum researchers' societies, and 30.8% were by Korea Education & Research Information Service (KERIS).

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

A Study on the Knowledge, Attitude and Practice of Handwashing of Middle School Students (일부 중학생의 손씻기 지식, 태도 및 실천에 관한 연구)

  • Jang, Yun-Jeong;Na, Bak-Ju;Kim, Keon-Yeop;Bae, Seok-Hwan;Kim, Chul-Woung;Kim, Eun-Young;Lee, Moo-Sik
    • Korean Journal of Health Education and Promotion
    • /
    • v.24 no.4
    • /
    • pp.1-22
    • /
    • 2007
  • Objectives: This study attempted to understand the relationship between handwashing knowledge, attitude and practice of middle school students and to provide the basic information for handwashing training of the students and help them to form a healthy habit. Methods: Data was collected by a standardized self-administered questionnaire between Sep. 20 to Oct. 6 2006 with a total of 710 students in 1, 2, 3 grades at 6 middle schools in metropolitan cities(490 students from four schools situated in an urban center, 220 from 2 in a suburban district). The data was then analyzed using the SPSS WIN 12.0 program, employing many statistical techniques such as chi-square($x^2$) test, t-test, ANOVA analysis with post hoc test, correlations analysis, and regression analysis. Results: The results of the study were as follows. First, total number of handwashing times of middle school students is 6.69 per day. 66.1% of the students used soap and most of the students washed hands for $6{\sim}10$ seconds(44.7%). Second, in the knowledge of handwashing, "both of the parents"(p<0.01), "catholic", "city"(p<0.05) were the highest and the practice of handwashing was active with "city", "high economic level"(p<0.05) and "both of the parents"(p<0.01). In the experience of teaching handwashing, "Yes" was 24.3% which was statistically significant with handwashing knowledge(p<0.05), attitude and practice(p<0.01). Third, in the correlation of handwashing knowledge, attitude and practice, there was statistical significancy between handwashing attitude and knowledge(p<0.01) and showed positive correlation with the knowledge(.534). The practice of handwashing has meaningful difference from the knowledge and the attitude and the coefficient of correlation shows positive co-relation in knowledge(.335) and attitude(0525). Fourth, based on the result for regression analysis with handwashing knowledge, attitude and practice as dependent variables, handwashing knowledge showed statistical significancy with sex, type of school(p<0.05) and residential area(p<0.01). There were also statistical significancy between handwashing attitude and knowledge(p<0.01) and between handwashing practice and religion, knowledge(p<0.05) and economic level, attitude(p<0.01). Conclusion: There were consistent results with handwashing knowledge, attitude and practice. If they had better knowledge, their attitude was more positive and if they had better knowledge and more positive attitude, their practice was active. The knowledge, attitude and practice of the students who learned about handwashing were higher than those of the students who had no experience of learning handwashing. To enhance handwashing habit of middle school students, the handwashing environment should be maintained. The training plans should also be made according to sex, type of school, economic level, residential area, and the consistent study on handwashing training is required.

Factors Related to Poor School Performance of Elementary School Children (국민학교아동의 학습부진에 관련된 요인)

  • Park, Jung-Han;Kim, Gui-Yeon;Her, Kyu-Sook;Lee, Ju-Young;Kim, Doo-Hie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.628-649
    • /
    • 1993
  • This study was conducted to investigate the factors related to the poor school performance of the elementary school children. Two schools in Taegu, one in the affluent area and the other in the poor area, were selected and a total of 175 children whose school performance was within low 10 percentile (poor performers) and 97 children whose school performance were within high 5 percentile (good performers) in each class of 2nd, 4th and 6th grades were tested for the physical health, behavioral problem and family background. Each child had gone through a battery of tests including visual and hearing acuity, anthropometry (body weight, height, head circumference), intelligence (Kodae Stanford-Binet test), test anxiety (TAI-K), neurologic examination by a developmental pediatrician and heavy metal content (Pb, Cd, Zn) in hair by atomic absorption spectrophotometry. A questionnaire was administered to the mothers for prenatal and prenatal courses of the child, family environment, child's developmental history, and child's behavioral and learning problems. Another questionnaire was administered to the teachers of the children for the child's family background, arithmatic & language abilities and behavioral problem. The poor school performance had a significant correlation with male gender, high birth order, broken home, low educational and occupational levels of parents, visual problem, high test anxiety score, attention deficit hyperactivity disorder (ADHD), poor physical growth (weight, height, head circumference) and low I.Q. score. The factors that had a significant correlation with the poor school performance in multiple logistic regression analysis were child's birth order (odds ratio=2.06), male gender(odds ratio=5.91), broken home(odds ratio=9.29), test anxiety score(odds ratio=1.07), ADHD (odds ratio=9.67), I.Q. score (odds ratio=0.85) and height less than Korean standard mean-1S.D.(odds ratio=11.12). The heavy metal contents in hair did not show any significant correlation with poor school performance. However the lead and cadmium contents were high in males than in females. The lead content was negatively correlated with child's grade(P<0.05) and zinc was positively correlated with grade (P<0.05). among the factors that showed a significant correlation with the poor school performance, high birth order, short stature and ADHD may be modified by a good family planning, good feeding practice for infant and child, and early detection and treatment of ADHD. Also, teacher and parents should restrain themselves from inducing excessive test anxiety by forcing the child to study and over-expecting beyond the child's intellectual capability.

  • PDF

Importance of End User's Feedback Seeking Behavior for Faithful Appropriation of Information Systems in Small and Medium Enterprises (중소기업 환경에서의 합목적적 정보시스템 활용을 위한 최종사용자 피드백 탐색행위의 중요성)

  • Shin, Young-Mee;Lee, Joo-Ryang;Lee, Ho-Geun
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.61-95
    • /
    • 2007
  • Small-and-medium sized enterprises(SMEs) represent quite a large proportion of the industry as a whole in terms of the number of enterprises or employees. However researches on information system so far have focused on large companies, probably because SMEs were not so active in introducing information systems as larger enterprises. SMEs are now increasingly bringing in information systems such as ERP(Enterprise Resource Planning Systems) and some of the companies already entered the stage of ongoing use. Accordingly, researches should deal with the use of information systems by SME s operating under different conditions from large companies. This study examined factors and mechanism inducing faithful appropriation of information systems, in particular integrative systems such as ERP, in view of individuals` active feedback-seeking behavior. There are three factors expected to affect end users` feedback-seeking behavior for faithful appropriation of information systems. They are management support, peer IT champ support, and IT staff support. The main focus of the study is on how these factors affect feedback-seeking behavior and whether the feedback-seeking behavior plays the role of mediator for realizing faithful appropriation of information systems by end users. To examine the research model and the hypotheses, this study employed an empirical method based on a field survey. The survey used measurements mostly employed and verified by previous researches, while some of the measurements had gone through minor modifications for the purpose of the study. The survey respondents are individual employees of SMEs that have been using ERP for one year or longer. To prevent common method bias, Task-Technology Fit items used as the control variable were made to be answered by different respondents. In total, 127 pairs of valid questionnaires were collected and used for the analysis. The PLS(Partial Least Squares) approach to structural equation modeling(PLS-Graph v.3.0) was used as our data analysis strategy because of its ability to model both formative and reflective latent constructs under small-and medium-size samples. The analysis shows Reliability, Construct Validity and Discriminant Validity are appropriate. The path analysis results are as follows; first, the more there is peer IT champ support, the more the end user is likely to show feedback-seeking behavior(path-coefficient=0.230, t=2.28, p<0.05). In other words, if colleagues proficient in information system use recognize the importance of their help, pass on what they have found to be an effective way of using the system or correct others' misuse, ordinary end users will be able to seek feedback on the faithfulness of their appropriation of information system without hesitation, because they know the convenience of getting help. Second, management support encourages ordinary end users to seek more feedback(path-coefficient=0.271, t=3.06, p<0.01) by affecting the end users' perceived value of feedback(path-coefficient=0.401, t=6.01, p<0.01). Management support is far more influential than other factors that when the management of an SME well understands the benefit of ERP, promotes its faithful appropriation and pays attention to employees' satisfaction with the system, employees will make deliberate efforts for faithful appropriation of the system. However, the third factor, IT staff support was found not to be conducive to feedback-seeking behavior from end users(path-coefficient=0.174, t=1.83). This is partly attributable to the fundamental reason that there is little support for end users from IT staff in SMEs. Even when IT staff provides support, end users may find it less important than that from coworkers more familiar with the end users' job. Meanwhile, the more end users seek feedback and attempt to find ways of faithful appropriation of information systems, the more likely the users will be able to deploy the system according to the purpose the system was originally meant for(path-coefficient=0.35, t=2.88, p<0.01). Finally, the mediation effect analysis confirmed the mediation effect of feedback-seeking behavior. By confirming the mediation effect of feedback-seeking behavior, this study draws attention to the importance of feedback-seeking behavior that has long been overlooked in research about information system use. This study also explores the factors that promote feedback-seeking behavior which in result could affect end user`s faithful appropriation of information systems. In addition, this study provides insight about which inducements or resources SMEs should offer to promote individual users' feedback-seeking behavior when formal and sufficient support from IT staff or an outside information system provider is hardly expected. As the study results show, under the business environment of SMEs, help from skilled colleagues and the management plays a critical role. Therefore, SMEs should seriously consider how to utilize skilled peer information system users, while the management should pay keen attention to end users and support them to make the most of information systems.