• 제목/요약/키워드: Learning based compressive sensing

검색결과 2건 처리시간 0.017초

향상된 초기화 구조를 이용한 측면주사소나 영상 초해상도 영상복원 (Side scan sonar image super-resolution using an improved initialization structure)

  • 이준엽;구본화;김완진;고한석
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 논문에서는 학습 기반 압축 센싱을 이용하여 측면 주사 소나 영상의 해상도를 향상하는 초해상도 기법을 다룬다. 딥러닝과 압축 센싱이 접목된 학습 기반 압축 센싱은 구조적인 측면에서 피드-포워드(feed forward) 네트워크 형태이며 학습을 통하여 파라미터들을 자동으로 설정하게 된다. 본 논문에서는 초해상도 과정에서 필요한 추가 정보들을 다양한 초기화 방법을 통해 효과적으로 추출할 수 있는 방법을 제안한다. 다양한 모의 실험에서 제안하는 방법은 기존 방식보다 Peak Signal-to-Noise Ratio(PSNR) 및 Structure Similarity Index Measure(SSIM) 지표상 향상된 성능 결과를 나타내었다.

Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱 (Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising)

  • 이보경;구본화;김완진;김성일;고한석
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.246-254
    • /
    • 2020
  • 본 논문에서는 학습 기반 압축 센싱 기법을 이용한 측면주사 소나 영상의 비균일 잡음 제거 알고리즘을 제안한다. 제안하는 기법은 Iterative Shrinkage and Thresholding Algorithm(ISTA) 알고리즘을 기반으로 하고 있으며 성능 향상을 위해 학습네트워크의 비선형성을 강화시키는 전략을 선택하였다. 제안된 구조는 입력 신호를 비선형 변환과 초기화 하는 부분, Sparse 공간으로 변환 및 역변환하는 ISTA block, 특징 공간에서 픽셀 공간으로 변환하는 부분으로 구성된다. 제안된 기법은 다양한 모의 실험을 통해 잡음 제거 성능 및 메모리 효율성 측면에서 우수함이 입증되었다.