• 제목/요약/키워드: Learning based algorithm

검색결과 3,009건 처리시간 0.03초

랜덤 신호 기반 학습의 유전 알고리즘을 이용한 퍼지 제어기의 설계 (Design of a Fuzzy Controller Using Genetic Algorithms Employing Random Signal-Based Learning)

  • 한창욱;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.131-137
    • /
    • 2001
  • Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on only particular domian. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. This paper describes the application of random signal-based learning to a genetic algorithm in order to get well tuned fuzzy rules. The key of tis approach is to adjust both the width and the center of membership functions so that the tuned rule-based fuzzy controller can generate the desired performance. The effectiveness of the proposed algorithm is verified by computer simulation.

  • PDF

이론정련 지식기반인공신경망을 이용한 귀납적 학습 (Inductive Learning using Theory-Refinement Knowledge-Based Artificial Neural Network)

  • 심동희
    • 한국멀티미디어학회논문지
    • /
    • 제4권3호
    • /
    • pp.280-285
    • /
    • 2001
  • 귀납적학습 알고리즘과 분석적학습 알고리즘을 결합한 지식기반인공신경망이 제안된 후, 이를 개선한 TopGen, TR-KBANN, THRE-KBANN과 같은 영역이론정련알고리즘이 제시되었다. 그러나 이들은 모두 KBANN과 같이 영역이론이 있을 경우에만 사용할 수 있다. 본 연구에서는 영역이론이 없이 예제만 있는 경우 KBANN으로 표기하는 알고리즘을 제시하였다. KBANN으로 표현된 영역 이론은 THRE-KBANN으로 정련화될 수 있다. 이 알고리즘을 귀납적 학습에서 사용하는 몇 개의 문제영역에 적용하여 실험한 결과 C4.5보다 좋은 성능을 나타냈다.

  • PDF

선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘 (Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis)

  • 강승현;노태원;이병국
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

A Dynamic Channel Switching Policy Through P-learning for Wireless Mesh Networks

  • Hossain, Md. Kamal;Tan, Chee Keong;Lee, Ching Kwang;Yeoh, Chun Yeow
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.608-627
    • /
    • 2016
  • Wireless mesh networks (WMNs) based on IEEE 802.11s have emerged as one of the prominent technologies in multi-hop communications. However, the deployment of WMNs suffers from serious interference problem which severely limits the system capacity. Using multiple radios for each mesh router over multiple channels, the interference can be reduced and improve system capacity. Nevertheless, interference cannot be completely eliminated due to the limited number of available channels. An effective approach to mitigate interference is to apply dynamic channel switching (DCS) in WMNs. Conventional DCS schemes trigger channel switching if interference is detected or exceeds a predefined threshold which might cause unnecessary channel switching and long protocol overheads. In this paper, a P-learning based dynamic switching algorithm known as learning automaton (LA)-based DCS algorithm is proposed. Initially, an optimal channel for communicating node pairs is determined through the learning process. Then, a novel switching metric is introduced in our LA-based DCS algorithm to avoid unnecessary initialization of channel switching. Hence, the proposed LA-based DCS algorithm enables each pair of communicating mesh nodes to communicate over the least loaded channels and consequently improve network performance.

Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘 (Improved Deep Q-Network Algorithm Using Self-Imitation Learning)

  • 선우영민;이원창
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning은 간단한 비활성 정책 actor-critic 알고리즘으로써 에이전트가 과거의 좋은 경험을 활용하여 최적의 정책을 찾을 수 있도록 해준다. 그리고 actor-critic 구조를 갖는 강화학습 알고리즘에 결합되어 다양한 환경들에서 알고리즘의 상당한 개선을 보여주었다. 하지만 Self-Imitation Learning이 강화학습에 큰 도움을 준다고 하더라도 그 적용 분야는 actor-critic architecture를 가지는 강화학습 알고리즘으로 제한되어 있다. 본 논문에서 Self-Imitation Learning의 알고리즘을 가치 기반 강화학습 알고리즘인 DQN에 적용하는 방법을 제안하고, Self-Imitation Learning이 적용된 DQN 알고리즘의 학습을 다양한 환경에서 진행한다. 아울러 그 결과를 기존의 결과와 비교함으로써 Self-Imitation Leaning이 DQN에도 적용될 수 있으며 DQN의 성능을 개선할 수 있음을 보인다.

NETLA Based Optimal Synthesis Method of Binary Neural Network for Pattern Recognition

  • Lee, Joon-Tark
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes an optimal synthesis method of binary neural network for pattern recognition. Our objective is to minimize the number of connections and the number of neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm (NETLA) for the multilayered neural networks. The synthesis method in NETLA uses the Expanded Sum of Product (ESP) of the boolean expressions and is based on the multilayer perceptron. It has an ability to optimize a given binary neural network in the binary space without any iterative learning as the conventional Error Back Propagation (EBP) algorithm. Furthermore, NETLA can reduce the number of the required neurons in hidden layer and the number of connections. Therefore, this learning algorithm can speed up training for the pattern recognition problems. The superiority of NETLA to other learning algorithms is demonstrated by an practical application to the approximation problem of a circular region.

pRAM회로망을 위한 역전파 학습 알고리즘 (A Backpropagation Learning Algorithm for pRAM Networks)

  • 완재희;채수익
    • 전자공학회논문지B
    • /
    • 제31B권1호
    • /
    • pp.107-114
    • /
    • 1994
  • Hardware implementation of the on-chip learning artificial neural networks is important for real-time processing. A pRAM model is based on probabilistic firing of a biological neuron and can be implemented in the VLSI circuit with learning capability. We derive a backpropagation learning algorithm for the pRAM networks and present its circuit implementation with stochastic computation. The simulation results confirm the good convergence of the learning algorithm for the pRAM networks.

  • PDF

적응적 학습 파라미터의 고정점 알고리즘에 의한 독립성분분석의 성능개선 (Performance Improvement of Independent Component Analysis by Fixed-point Algorithm of Adaptive Learning Parameters)

  • 조용현;민성재
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.397-402
    • /
    • 2003
  • 본 연구에서는 뉴우턴법의 고정점 알고리즘에 적응 조정이 가능한 학습 파라미터를 이용한 효율적인 신경망 기반 독립성분분석기법을 제안하였다. 이는 엔트로피 최적화 함수의 1차 미분을 이용하는 뉴우턴법의 고정점 알고리즘에서 학습율과 모멘트를 역혼합행렬의 경신 상태에 따나 적응조정되도록 함으로써 분리속도와 분리성능을 개선시키기 위함이다 제안된 기법을 256$\times$256 픽셀의 8개 지문과 512$\times$512 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 지문과 영상의 분리에 적용한 결과, 기존의 고정점 알고리즘에 의한 결과보다 우수한 분리성능과 빠른 분리속도가 있음을 확인하였다. 특히 제안된 알고리즘은 문제의 규모가 클수록 분리성능과 분리속도의 개선 정도가 큼을 확인하였다.

Implementing a Branch-and-bound Algorithm for Transductive Support Vector Machines

  • Park, Chan-Kyoo
    • Management Science and Financial Engineering
    • /
    • 제16권1호
    • /
    • pp.81-117
    • /
    • 2010
  • Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM. In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.