• Title/Summary/Keyword: Learning assessment

Search Result 1,502, Processing Time 0.034 seconds

Research on Overseas Trends and Emerging Topics in Field of Library and Information Science (문헌정보학분야 해외 연구 동향 및 유망 주제 분석 연구)

  • Bon Jin Koo;Durk Hyun Chang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.71-96
    • /
    • 2023
  • This study aimed to investigate key research areas in the field of Library and Information Science (LIS) by analyzing trends and identifying emerging topics. To facilitate the research, a collection of 40,897 author keywords from 11,252 papers published in the past 30 years (1993-2022) in five journals was gathered. In addition, keyword analysis, as well as Principal Component Analysis (PCA) and correlation analysis were conducted, utilizing variables such as the number of articles, number of authors, ratio of co-authored papers, and cited counts. The findings of the study suggest that two topics are likely to develop as promising research areas in LIS in the future: machine learning/algorithm and research impact. Furthermore, it is anticipated that future research will focus on topics such as social media and big data, natural language processing, research trends, and research assessment, as they are expected to emerge as prominent areas of study.

Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs

  • Kaan Orhan;Ceren Aktuna Belgin;David Manulis;Maria Golitsyna;Seval Bayrak;Secil Aksoy;Alex Sanders;Merve Onder;Matvey Ezhov;Mamat Shamshiev;Maxim Gusarev;Vladislav Shlenskii
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.199-207
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate the accuracy and effectiveness of an artificial intelligence (AI) program in identifying dental conditions using panoramic radiographs(PRs), as well as to assess the appropriateness of its treatment recommendations. Materials and Methods: PRs from 100 patients(representing 4497 teeth) with known clinical examination findings were randomly selected from a university database. Three dentomaxillofacial radiologists and the Diagnocat AI software evaluated these PRs. The evaluations were focused on various dental conditions and treatments, including canal filling, caries, cast post and core, dental calculus, fillings, furcation lesions, implants, lack of interproximal tooth contact, open margins, overhangs, periapical lesions, periodontal bone loss, short fillings, voids in root fillings, overfillings, pontics, root fragments, impacted teeth, artificial crowns, missing teeth, and healthy teeth. Results: The AI demonstrated almost perfect agreement (exceeding 0.81) in most of the assessments when compared to the ground truth. The sensitivity was very high (above 0.8) for the evaluation of healthy teeth, artificial crowns, dental calculus, missing teeth, fillings, lack of interproximal contact, periodontal bone loss, and implants. However, the sensitivity was low for the assessment of caries, periapical lesions, pontic voids in the root canal, and overhangs. Conclusion: Despite the limitations of this study, the synthesized data suggest that AI-based decision support systems can serve as a valuable tool in detecting dental conditions, when used with PR for clinical dental applications.

Evaluation of the Coverage Assessment of Rainfall-Runoff Model for Data Length (데이터 길이에 대한 강우-유출 모델 적용범위 평가)

  • Jeon Seong Jae;Shin Mun Ju;Jung Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.383-383
    • /
    • 2023
  • 오늘날 수문학 분야에서는 유역에 대한 강우-유출 시뮬레이션을 머신 러닝(ML: Machine Learning)을 활용하여 다양한 연구를 실행하고 있다. 본 연구에서는 시간별 강우-유출 예측 모델인 GR4H(Génie Rural à 4 paramètres Horaires)를 사용하여 충주댐 유역을 대상으로 연구를 수행하였다. 유역의 속성에 따라서 모델의 성능이 어떻게 달라지는지 비교하여 특성에 맞는 모델을 알아내고. 또한 이 과정에서 기상 및 유출 데이터의 보정 길이를 가지고 어느 정도의 데이터 기간이 모델에서 좋은 성능을 보이는지 파악하였다. 뿐만 아니라 모델에 필요한 선행기간의 데이터가 있는 경우와 없는 경우를 비교하여 어떠한 차이를 보이는지, 그리고 선행기간은 얼마나 필요한지 연구를 통하여 알아냈다. 본 연구를 통하여 충주댐 유역에 대한 모델의 적용성 및 성능을 파악하고 수문 모형 구축에 제한이 있는 유역에 대해서도 사용이 가능한지 판단한다. 실험 유역의 관측 값을 모델에 입력한 후 각 모델에 해당하는 매개변수의 최적값을 찾아내는 과정을 거쳐 시뮬레이션을실 행했다. 본 연구에서 사용한 강우-유출 모델인 GR4H는 프랑스의 INRAE-Antony(Institut National de la recherche agronomique-Antony)에서 만들어진 airGR의 일종으로, 시간별 강우-유출 예측을 위해 개발된 공정 기반(process-based)의 집중적, 개념적 수문학 모델이다. 4개의 매개변수(parameter)가 있으며 이는 유역의 특정 속성을 나타낸다. GR4H를 시뮬레이션 하는 과정에서 매개변수의 최적화를 위해 적절한 보정 길이를 파악하여야 한다. 이러한 과정은 4년, 5년, 6년 등 1년씩 데이터의 양을 늘려가며 매개변수를 최적화한다. 이 과정에서 기상 및 유출 데이터의 적절한 보정 길이를 찾아낸다. 시뮬레이션을 통해 얻은 데이터를 관측 값과 비교하여 모델의 성능을 평가하고 다른 관측 값을 통해 시뮬레이션을 실행하여 검증을 거친다.

  • PDF

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Suggestions for Class Design of Artificial Intelligence Convergence Education in Elementary and Secondary Schools (초·중등학교에서의 인공지능 융합교육 수업 설계를 위한 제언)

  • Yun, Hye Jin;Cho, Jungwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.182-184
    • /
    • 2022
  • As artificial intelligence (AI) is emphasized in elementary and secondary school education, interest in AI-applied class activities is increasing. Since AI is taught across various subjects in schools, teachers must plan lessons based on the principles of convergence education. In this paper, the concept of convergence education and matters to be considered for productive class activities were reviewed. Then, considerations for designing AI classes in schools are presented in the following aspects: characteristics of AI education in schools; educational goals for each school level in the general guidelines of the national curriculum; resources to be referenced when composing class content; perspectives on AI-applied software; and anticipated instructional procedures. As a suggestion, the following is presented. First, it is necessary to derive competencies that can be cultivated by AI education in school. Second, it is necessary to specify the design elements and procedures of AI classes based on the subject characteristics.

  • PDF

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.

Application of machine learning technique for runoff prediction in watershed with limited data (자료 과소 유역 유출 모의을 위한 머신러닝 기법 적용)

  • Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Jeong, Jiyeon;Yoon, Kwangsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.254-254
    • /
    • 2021
  • 기후변화로 인한 자연재해는 해마다 크게 증가하고있으며, 홍수 및 가뭄의 강도와 빈도 증가, 지구온난화로 인한 하천 건천화 등 많은 문제들이 대두되고 있다. 특히, 물 순환과정의 핵심요소로 설명되는 유출량의 변동은 용수 공급과 홍수 대응 및 관리, 하천생태계 유지를 위한 환경에 영향을 미치고 있다. 따라서, 갈수량, 풍수량 등을 산정하여 하천별 유황특성을 결정하는 방법을 사용하고 있으나, 이와같은 지표는 계측자료가 과소한 경우 하천의 유황특성을 세부적으로 이해하고 정량적으로 제시하는데에 한계가있다. 따라서, 미계측 유역에서 Soil and Water Assessment Tool (SWAT)과 같은 수리해석모델이 광범위하게 이용되고있으며, SWAT 모델은 유역의 수치표고모형, 토양 특성, 토지이용 현황, 기상 현황, 유역의 매개변수 등을 반영하여 모델이 구동되고 있다. 하지만, 광범위하게 이용되고 적용성이 입증된 모델임에도 불구하고 입력자료의 불확실성 및 조사되지 않은 영농활동 등으로 인해 결과에 불확실성이 내포되어있으며, 불확실성을 줄이기 위해 실측된 하천의 유량 자료를 이용하여 검정 및 보정작업을 거치고 있다. 모델의 보정 방법으로는 SWAT-CUP과 같은 프로그램 이용되고 있지만, 모델에서 이용되는 매개변수로는 보정할수 있는 범위가 한정적이기 때문에 모델의 정확성을 높이는데에 한계가 있다. 따라서, 본 연구에서는 선암천 유역을 대상으로 모델의 매개변수를 보정하지 않고도 머신러닝 기법을 이용하여 모델의 결과를 향상시켰다. 보정 결과, 유량의 경우 R2가 0.42에서 0.91으로 향상되었으며, 특히 고유량 구간에서의 정확성이 매우 향상되었다. 본 연구에서 평가된 SWAT+머신러닝 결합 모형은 향후 모델 구동에 필요한 입력자료가 부족한 경우와 빠른 검정 및 보정 작업이 필요할 경우 활용될수 있을것으로 판단된다.

  • PDF

Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 농도별 예측 모델 설계)

  • Kyoung-Woo Cho;Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.576-581
    • /
    • 2021
  • Compared to a low concentration, a high concentration clearly entails limitations in terms of predictive performance owing to differences in its frequency and environment of occurrence. To resolve this problem, in this study, an artificial intelligence neural network algorithm was used to classify low and high concentrations; furthermore, two prediction models trained using the characteristics of the classified concentration types were used for prediction. To this end, we constructed training datasets using weather and air pollutant data collected over a decade in the Cheonan region. We designed a DNN-based classification model to classify low and high concentrations; further, we designed low- and high-concentration prediction models to reflect characteristics by concentration type based on the low and high concentrations classified through the classification model. According to the results of the performance assessment of the prediction model by concentration type, the low- and high-concentration prediction accuracies were 90.38% and 96.37%, respectively.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Intestinal Immunomodulatory Effect and Marker Compound of Centella asiatica Extracts-Added Beverage Prototype (병풀 추출물이 첨가된 음료 시제품의 장내 면역조절 효과와 지표물질)

  • Yeon Suk Kim;Hyun Young Shin;Ja Pyeong Koo;Eun Ji Ha;Won Bi Jeong;Mi Yeun Joung;Kwang-Won Yu
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.436-444
    • /
    • 2023
  • To produce an intestinal immunomodulatory beverage containing Centella asiatica extract (CAE), three types of CAE-added beverage prototypes were prepared, and their immunomodulatory activities and marker compounds were analyzed. As a result of the cytotoxicity assessment, all the beverages did not show significant toxicity compared to the control group. Next, the immunomodulatory activities of the beverage prototype were evaluated using the inflammatory model of IL-1β-induced intestinal epithelial cell line. All the samples significantly reduced the production of IL-6, IL-8, and MCP-1 in a CAE concentration-dependent manner. In addition, CAE-added beverages inhibited NO, IL-6, and IL-12 production in LPS-induced RAW 264.7 cells. When the major triterpenoids, as marker compounds for the production of CAE-added beverages, were analyzed by HPLC-DAD, only asiaticoside was detected beyond the limit of quantification, while madecassoside, madecassic acid, and asiatic acid were not detected. The amounts of asiaticoside in CAE-added beverage prototypes were confirmed in No. 1 (19.39 ㎍/mL), 2 (19.25 ㎍/mL), and 3 (19.98 ㎍/mL). In conclusion, the results of this study suggested that CAE-added beverage prototypes induced immunomodulatory effects in the intestinal inflammatory cell line models and asiaticoside could be used as a marker compound for CAE-added beverage production.